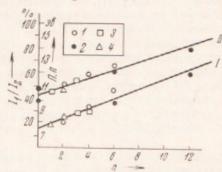
УДК 547.1'3+543.51

ХИМИЯ

Член-корреспондент АН СССР Г. Г. ДЕВЯТЫХ, Н. В. ЛАРИН, П. Е. ГАЙВОРОНСКИЙ


МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ АЛКИЛЬНЫХ ЗАМЕСТИТЕЛЕЙ В БЕНЗОЛЬНОМ КОЛЬЦЕ ЛИГАНДА НА ПРОЧНОСТЬ СВЯЗИ МЕТАЛЛ — ЛИГАНД В БИСАРЕНОВЫХ л-КОМПЛЕКСАХ ХРОМА

Цель данной работы — изучения влияния числа и вида алкильных заместителей в бензольном кольце на устойчивость бисареновых соединений хрома. Для этого были сняты масс-спектры и измерены потенциалы появления основных ионов в масс-спектрах бистолуолхрома, бисксилолхрома, бисмезитиленхрома, бензолкумолхрома и диэтилбензолэтилбензолхрома.

Работа проводилась на масс-спектрометре МИ-1311. В табл. 1 приведены моноизотопные масс-спектры исследованных нами соединений и

масс-спектр бисгексаметилбензолхрома по данным работы (1).

Рис. 1. Зависимость относительной интенсивности молекулярного иона (I) и потенциала иона Сr⁺ (II) в масс-спектрах алкильных производных бисбензолхрома от числа и вида алкильных заместителей в бензольном кольце лиганда. I₁ — интенсивность молекулярного иона, I₂ — интенсивность иона Сr⁺, п.п. — потенциал появления иона Сr⁺, п. — число алкильных заместителей. I — метильные производные, 2 — то же по данным (¹), 3 — этильные производные, 4 — изопропильные производные

Значительная интенсивность линий молекулярных ионов и ионов LCr⁺ свидетельствует о довольно высокой прочности связи металл — лиганд. Если один лиганд содержит большее число заместителей, чем

Таблица 1 Моноизотопные масс-спектры алкильных производных бисбензолхрома

Ион L ₁ CrL ₂ + L ₁ CrL ₂ 2+	19,4 2,01	21,3 5,8	28,7 6,7	32 7,0	$L_1 = L_2 = (CH_2)_3C_6H_3$ (1)		$L_1 = L_2 = (CH_3)_6C_6$
					45,9	36 11,4 61	59 21,9
L ₁ Cr ⁺ CrL ₂ ⁺ Cr ⁺	32,8 8,4 100	42,1	58,7 21,9 100	61,1	77,4	100	154

второй лиганд этого же соединения, то интенсивности ионов L_iCr^+ и L_2Cr^+ заметно различаются.

Как видно из рис. 1, относительная интенсивность молекулярного иона и потенциал появления иона Cr⁺ линейно возрастают с увеличением числа заместителей. При замене метильного радикала на этильный или

изопропильный относительная интенсивность молекулярного пона и по-

потенциал появления иона Cr+ практически не меняются.

Полученные результаты можно объяснить упрочнением связи между атомом хрома и лигандами вследствие донорного действия алкильных радикалов. Это находится в соответствии с результатами термохимических исследований (2-5) и данными по металл-углеродным валентным колебаниям в длинноволновой области и.к. спектров для трикарбонилхромареновых комплексов (7, 8).

В заключение авторы выражают благодарность В. А. Умилину и Ю. Б. Звереву, предоставившим для исследования образцы бисареновых

комплексов хрома.

Институт химии Академии наук СССР Горький Поступило 14 XII 1970

цитированная литература

¹ G. E. Herberlich, J. Müller, J. Organomet. Chem., 16, 111 (1969). ² S. Schreiner, Dissertation Techn. Hochschule München, 1959 (цит. по (³, ⁵)). ³ A. Reckziegel, Dissertation, Universität München, 1962. ⁴ A. K. Fischer, F. A. Cotton, G. Wilkinson, J. Phys. Chem., 63, 154 (1959). ⁵ E. O. Fischer, S. Schreiner, A. Reckziegel, Chem. Ber., 94, 258 (1964). ⁶ F. Rohrscheid, Dissertation, Universität, München, 1964 (цит. по (³)). ¬ J. P. Mortensen, Dissertation Techn. Hochschule, München, 1960 (цит. по (³)). в R. Dieter Fischer, Chem. Ber., 93, 165 (1960).