УДК 548.736.6

КРИСТАЛЛОГРАФИЯ

А. А. ПЕТРУНИНА, В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ТИНАКСИТА ≡ NaK₂Ca₂TiSi₇O₁₉(OH)

Новый природный силикат титана, натрия, калия и кальция впервые встречен в 1960 г. в породах Мурунского массива (Северо-западный Алдан) и назван по составу — тинакситом (¹). Для хорошо ограненных призматических кристаллов тинаксита характерна совершенная спайность по (100); минерал двуосный, положительный; $n_s = 1,666$; $n_m = 1,621$; $n_p = 1,593$; $n_s - n_p = 0,073$. Первичное рентгеновское исследогание выполнено А. А. Воронковым. Расчет химического анализа (аналитик В. А. Молева) по Хею (²) привел к почти «идеальным» целочисленным, атомным количествам в формуле NaK₂Ca₂TiSi₇O₁₉(OH); ячейка триклинная: $a = 10,35 \pm 0,05$ Å, $b = 12,17 \pm 0,05$, $c = 7,05 \pm 0,03$ Å;

Таблица 1

Атомы	x/a	31/0	z/c	Атомы	x/a	u/b	z/c	Атомы	x/a	1/Ъ	z/c
Ti1 Ti2 Na2 Ca1 Ca2 Ca2 Ca3 Ca3 Ca4 K1 K2 K3 K4 Si12 Si2 Si2 Si2 Si4 Si5 Si4 Si5 Si5	0 97,2 96,4 10,5 96,4 10,7 86,8 86,0 65,1 52,7 32,7 32,3 28,8 29,3 10,1 10,1 84,0 84,8 85,8	0 20,1 99,0 20,9 69,3 69,1 51,4 52,7 99,3 75,1 19,8 90,9 90,9 90,6 40,4 40,8 78,9 79,6	0 21,9 50,4 72,2 02,6 52,4 21,0 70,4 93,3 37,4 37,2 83,3 10,5 99,6 54,7 22,5 70,9	Sin1 Sin2 Sin3 Sin3 Sin4 O1 (OH) O2 O3 O4 O5 O6 O7 (OH) O8 O6 O10 O11 O12 O13 O14 O2	71,4 58,9 67,4 38,2 32,16 24,6 24,6 24,6 24,6 46,2 05,4 82,7 65,6 11,0 32,7 65,6 11,9 65,1 61,9 62,2 57,4	11,5 44,2 68,4 74,9 20,8 7 43,3 52,7 28,9 33,3 98,7 08,2 04,0 03,4 14,8 16,9 28,2 37,2	39,0 37,9 91,9 84,3 85,9 88,6 05,2 69,3 40,4 83,9 05,2 69,3 40,4 83,9 02,4 83,9 660,7 21,5 60,7 21,5 65,5 7	O10 O20 O21 O22 O23 O24 O25 O26 O27 O28 O29 O30 O31 O32 O33 O24 O35 O35	35,3 88,5 90,3 70,6 95,3 95,3 24,3 22,9 71,4 72,4 01,9 70,5 54,5 06,9 01,4 14,7 88,4	94,5 91,4 92,3 75,7 69,3 68,0 55,6 68,0 55,6 50,5 82,6 82,9 86,8 86,8 86,5 86,5 86,5 86,5 86,5 86,5	2/c 35,4 17,4 75,8 72,8 24,2 74,8 30,1 94,3 94,3 43,7 48,1 09,5 87,8 87,8 87,8 87,8 51,5 99,8 54,5 90,9
Sis Sig	66,4 30,5	28,4 52,1	65,7 31,5	016 017	15,7 37,8	38,7 83,0	78,3 02,5	O37 O38 O29	39,9 81,7	81,8 30,5	63,6 17,3
Silo	26,8	08,9	82.5	018	14.4	88.0	05.9	0.0	86 7	127	43 2

Координаты базисных атомов тинаксита

 $\alpha = 91^{\circ}00' \pm 30', \beta = 99^{\circ}20' \pm 30', \gamma = 92^{\circ}30' \pm 30'; Z = 2$ указанных формульных единиц. Обе федоровские группы P1 и P1 равновероятны.

Для структурного анализа использован экспериментальный материал: кфорограммы слоевых линий при вращении вокруг осей с и а: hk0 - hk5и 0kl - 2kl (Мо K_a -излучение, max sin $\vartheta / \lambda = 1,2$ Å⁻¹). Более 1500 ненулевых интенсивностей (оценены по $\sqrt[4]{2}$ -шкале марок почернения) легли в основу расчета трехмерной функции Патерсона P(uvw). Отсутствие в структуре достаточно выделяющихся по рассеивающей способности атомов при большом их общем числе в ячейке в рамках низкой симметрии вызывало неизбежные наложения и перекрытия на синтезе межатомной функции без четких патерсоновских максимумов и предопределило неудачу отыскания единичных векторов сдвига и вынужденно заставило обратиться к методу кратных пиков (³). Алгоритм выделения основной системы был применен в первоначальном варианте (³). Основная система (в рамках группы P1) ожидалась состоящей из 26 точек —

Рис. 1

средних атомов (2 атома Ti + + 4Ca + 4K + 14 атомов Si + + 2 катиона Na). Координаты выделенных на первом этапе 8 точек и добавленных к ним на втором еще 10 были приняты за исходные при построении первых синтезов

Рис. 1. Тинаксит (zz-проекция структуры). Бесконечная в двух измерениях стенка из октаздров трех сортов: Na, Ti и двойное число Ca. Стенка разбивается на пилястры (каждая из двух колонок): одна — из чисто Ca-октаздров (1), другая — из чередующихся пар Na-(2) и Ti-октаздров (3)

Рис. 2. Идеализированный тинакситовый кремнекислородный радикал, лента из параллельных и слившихся ценочек: волластонитовой и власовитовой (происхождение радикала так же можно представить как силификацию ксонотлитовой ленты Si₆O₁₇ молекулой SiO₂)

 $\rho(xyz)$ (R = 0.46, все атомы заданы с одной рассеивающей способностью, равной $f_{\rm sl}$). Дальнейшее уточнение координат по картам электронной плотности снизило R до 0.39 и позволило последовательно, с контролем по P(uvw), подключить еще 17 точек основной системы. На этом этапе уже можно было дифференцировать атомы на средние и легкие. Локализация остальных атомов и построение разумной модели структуры, а также последующее уточнение координат всех атомов велись исключительно по синтезам $\rho(xyz)$ и привели к R = 0.19. Уточнение коэффициента приведения в общую шкалу (K), индивидуальных слоевых множителей (K_1) и общей изотропной тепловой поправки (B) снизило ${}_{4}R_{hhl}$ до 0.15 (при B == -0.45 Å²) в рамках федоровской группы P1.

Координаты всех 66 базисных атомов (195 параметров *) на этой стадии расшифровки структуры приведены в табл. 1.

Два независимых атома Ті отстоят от 6 вершин своих искаженных октаэдров на 1,90-2,15 Å; такое же окружение и у 4 независимых катионов Са (Са — О = 2,18-2,58 Å). Семивершинники вокруг Na настолько искажены, что их удобнее описать как пентагональные бипирамиды; расстояния Na — O = 2,13-2,55 Å (при одном несколько выделяющемся 2,86 Å). Удаление лигандов в К-полиэдрах так же не выходит за пределы обычного

^{*} В связи с чем на последних стадиях анализа нам приплось перейти к расчетам по программе «Кристалл» (*), где нет ограничений на число базисных атомов, включаемых в расчет.

интервала: 2,60—3,02 Å. В кремнекислородных тетраэдрах Si — O = = 1,52—1,76 Å при ребрах O — O = 2,52—2,77 Å.

В качестве основного архитектурного элемента структуры можно выделить параллельные [001] бесконечные колонки из соединенных по ребру октаэдров. Колонки попарно объединяются в две двойные ленты: одна лента — чисто кальциевая (куспидиновая — тиллентовая), другая — составлена из чередующихся октаэдров * разного сорта (Ti + Na) и ее можно так же представить как чередование пар из односортных (Na + Na или Ti + Ti) октаэдров. Хотя ординарные смешанные (Na + Ti) колон-

Рис. 3

1

Рис. 4

Рис. 3. Тинакситовая лента в натуральном виде со входящим углом между двумя составляющими из рис. 2

Рис. 4. Тинаксит (xy-проекция структуры). Трансляционно идентичные степки показаны торцами составляющих колонок. *I* — пилястры из сдвоенных Са-колонок; 2 — пилястры с чередующимися Na- и Ті-парами. В левой ячейке видны (торцами) кремнекислородные ленты, в правой — наполнители — крупные катионы К

ки уже были встречены ранее в минералах группы ломоносовита (⁵) и в иннэлите (⁶), подобная двойная натро-титановая лента отмечается вцервые.

Указанные натро-титановые (параллельные (100)) и кальциевые ленты (параллельные (210)) по вершинам октаэдров объединяются в коленчатую сплошную, бесконечную в двух измерениях, стенку (одно колено натро-титановое, другое - кальциевое) со средним протяжением параллельно (100) (рис. 1 и 4). Трансляционно-идентичные ленты следует считать несущими опорами структуры: в простенках между ними помещается (прикрепляется к ним) бесконечный в одном измерении кремнскислородный радикал нового типа Si₇O₁₈(OH), который можно представить как продукт конденсации параллельных власовитовой (плоскость 4-ного кольца параллельна (100)) и волластонитовой цепочек (рис. 2, 3) или как конечный результат силификации - присоединения «молекул» SiO2 к ксонотлитовой ленте, параллельной (010), с образованием деформированной зигзагообразной ленты (рис. 2, 3). На ячейку приходится две таких ленты. Возникающие в силикатном каркасе окна — каналы заполнены К-полиэдрами, которые так же сочленяются в стенку, повторяющую изгибы главной и имеющую с ней общие ребра (К₁ и Ті₂) или вершины (К₂ и Са₂) (рис. 4).

^{*} С известной долей приближения при описании структуры Na-полиздр можно для простоты заменить октаздром.

Авторы пользуются случаем выразить свою признательность А. А. Воронкову и Ю. А. Пятенко, предоставивших свой экспериментальный материал и, тем самым, возможность расшифровки этого сложного и необычного силиката, а также Б. А. Максимову за помощь в работе и обсуждении результатов.

Институт кристаллографии Академии наук СССР Москва

Поступило 4 11 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Ю. Г. Рогов, В. П. Рогова и др., ДАН, 162, 658 (1965). ² М. Н. Неу, Mineral. Mag., 25, № 166, 402 (1939). ³ Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ЖСХ, 9, 620 (1968). ⁴ А. Б. Товбис, Б. М. Щедрин, Кристаллография, 15, 1127 (1970). ⁵ А. Д. Халилов, Диссертация, М., 1966. ⁶ А. Н. Чернов, В. В. Илюхин идр., Кристаллография, 16, № 1 (1971).