УДК 576.343

БИОХИМИЯ

Г. Н. ЗАЙЦЕВА, В. А. ЧУГУНОВ, А. Т. ШИРШОВ

ДЕЙСТВИЕ АНТИБИОТИКОВ НА БЕЛОКСИНТЕЗИРУЮЩИЕ СИСТЕМЫ КИНЕТОПЛАСТА И ЦИТОПЛАЗМЫ ЗООФЛАГЕЛЛЯТА STRIGOMONAS ONCOPELTI

(Представлено академиком А. Н. Беловерским 14 VIII 1970)

На основании электронномикроскопического, цитохимического и функционального изучения кинетопласта у представителей трипанозомид была установлена митохондриальная природа этой органеллы (¹,²). Нами было показано (³), что кинетопласт, являющийся, по-видимому, специализированным митохондрионом клетки зоофлагеллята Strigomonas oncopelti, содержит ДНК, ДНК-подобную РНК и рибосомы. Таким образом, в кинетопласте S, oncopelti, как и в митохондриях других организмов, имеются

компоненты, необходимые для синтеза белка.

В настоящее время способность изолированных митохондрий к белковому синтезу не вызывает сомнения. Особенностью митохондрий является то, что их белоксинтезирующая система отличается от цитоплазматической и напоминает бактериальную (*). Это сходство состоит в том, что синтез белка в митохондриях іп vitro и в бактериях одинаково чувствителен к таким антибиотикам, как, например, пуромицин, актиномицин Д, хлорамфеникол, и устойчив к циклогексимиду. Напротив, цитоплазматическая белоксинтезирующая система ингибируется циклогексимидом и нечувствительна к хлорамфениколу (5). Кроме того, такой сильный ингибитор цитоплазматического белкового синтеза, как рибонуклеаза, не влияет на включение меченых аминокислот в белки митохондрий, что, по-видимому, связано с непроницаемостью их мембран для этого фермента.

Вследствие избирательности действия циклогексимид и хлорамфеникол широко используются для изучения различий белоксинтезирующего аппарата митохондрий и цитоплазмы у животных и растительных организмов. Однако существует лишь небольшое число работ, касающихся влияния этих антибиотиков на включение аминокислот в цитоплазматические и митохондриальные белки простейших. Было показано, что цитоплазматические рибосомы у различных представителей простейших Crithidia (Strigomonas) oncopelti (6), Crithidia fasciculata (7), Euglena gracilis (8), Paramecium (9), как и у других эукариота, устойчивы к действию хлорамфеникола и чувствительны к циклогексимиду и рибонуклеазе. Имеются также единичные сообщения о синтезе белка в изолированных митохондриях (10, 11) и кинетосомах (12) у простейших. Так, при исследовании действия хлорамфеникола и хлортетрациклина на включение С14-лейцина в белки митохондриальной и микросомальной фракций Tetrahymena pyriformis было установлено, что эти два антибиотика избирательно ингибируют белоксинтезирующую систему митохондрий (10).

В нашей работе проводилось сравнительное изучение влияния хлорамфеникола и циклогексимида на включение меченых аминокислот в белки изолированных кинетопластов и рибосом цитоплазмы S. oncopelti.

Подобное исследование может дать информацию, с одной стороны, о функциональных особенностях белоксинтезирующих систем цитоплазмы и кинетопласта зоофлагеллят, а с другой — о возможном сходстве этих систем в кинетопласте и в митохондриях других эукариота.

Для работы использовали культуру лептомонадных форм S, oncopelti, выращенную в течение 70—90 час. на жидкой среде с аэрацией (13)

Действие хлорамфеникола и циклогексимида на включение С¹⁴-аминокислот в белок изолированных кинетопластов S. oncopelti

Условия	Опыт № 1					
	С ¹⁴ -гидролизат белка хлореллы		С4-лейцин		Опыт № 2, С14-лейцин	
	имп/мин на 1 мг белка	% ингиби- рования	имп/мин на 1 мг белиа	% ингиби- рования	имп/мин на 1 мг бедка	% ингиби- рования
Полная система С хлорамфениколом	837 158	81	455 50	89	981 115	88
С циклогексимидом С хлорамфениколом и цик- логексимидом	785	6	410	2 89	998	2
С РНКазой Без энергетической системы	110	87	=	=	901 120	8 88

Примечание. Состав инкубационной среды (дмол. в 1 мл). Опыт № 1: трие-НСІ-буфер, рН 7,5 50; MgCl, 10; КСІ 50; сахароза 250, 3-меркаптостанол 5; К_АНРО₄ 5; фосфознолпируват (ФЭП, фирма Calbiochem) 5; АТФ 2; ЦТФ 0,1; ГТФ 0,5; УТФ 0,4 (все нуклеозилтрифосфаты фирмы Pabst Laboratories); фосфознолпируваткиназа (ФЭП-киназа) 20 µг; кинетопласты—6 мг белка; С¹-гидровкая хоредым 1 µС (у.а. 40 мС/мм); С¹-лейцин 2 µС (у.а. 49 мС/г). Опыт № 2: состав тот же, что и в опыте 1, за исключением ЭДТА 2 имол.; кинетопласты—3 мг белка; С¹-лейцин 1 µС; РНКаза (Фярма Sigma) 20 µг. В опытах № 1 и № 2 хлорамфеникола и пиклогексимида фирмы Sigma) по 100 µг. Результаты— среднее из двух повто сстей.

Клетки разрушали при помощи стеклянных бус в среде A (трис-HClбуфер pH 7,5 0,1 M, β-меркантоэтанол 0,005 M, сахароза 0,25 M). Гомогенат разводили в 10 раз средой Б (та же, что среда А, но с 0,03 М трисбуфером). Неразрушенные клетки, ядра, биполярные тельца и «тяжелые» мембраны осаждали 3-кратным центрифугированием при 1000 g в течение 10 мин. и отбрасывали. Из надосадочной жидкости «сырую» фракцию кинетопластов получали центрифугированием при 4500 g в течение 15 мин. Фракцию загрязненных мембранами кинетопластов суспендировали в среде E и обрабатывали рибонуклеазой (50 $\mu r/m\pi$, $t=20^{\circ}$, 30 мин.). Затем кинетопласты промывали дважды средой Б при тех же условиях. В результате получали фракцию очищенных от цитоплазматических рибосом кинетопластов, в которые включали С14-лейции и С14-гидролизат белка хлореллы (опыт № 1). Кроме того, мы проводили включение С11-лейцина в кинетопласты, очищенные от мембран центрифугированием в линейном градиенте концентрации сахарозы (опыт № 2). Для этого суспензию «сырой» фракции кинетопластов наслаивали на поверхпость 27 мл линейного градиента концентрации сахарозы (1,2 М — 2,0 М) и центрифугировали в роторе SW-25-1 (центрифуга Spinco L-2) в течение 1 часа при 22 000 об/мин и температуре +2°. Зону кинетопластов отсасывали пастеровской пипеткой, разводили в отношении 1:2 средой Б и осаждали при 15 000 g в течение 15 мин. (опыт № 2).

Из надосадочной жидкости после осаждения микросомальной фракции выделяли цитоплазматические рибосомы путем однократного центрифугирования при 157 000 g в течение 1 часа. Фракцию «рН 5 ферментов»

получали по методу (14).

В целях предотвращения бактериального загрязнения выделение кинетопластов и цитоплазматических рибосом проводили по возможности в стерильных условиях. Все реактивы готовили на стерильной воде и хра-

нили в замороженном состоянии.

Для включения С¹⁴-гидролизата белка хлореллы и С¹³-лейцина в кислотонерастворимые белки кинетопластов использовали среду (¹⁵) с небольшой модификацией. Состав среды для включения С¹⁴-аминокислот в рибосомы цитоплазмы был взят нами из работ Честерса (⁶) с некоторыми изменениями. В тех вариантах опыта, где использовали хлорамфеникол и циклогексимид, радиоактивные аминокислоты добавляли после 15 мин. преинкубации фракций кинетопластов и цитоплазматических рибосом с этими антибиотиками. Инкубацию с радиоактивными предшественниками проводили при 30° в течение 30 мин. с периодическим перемешиванием. Во всех опытах был поставлен контроль на адсорбцию радиоактивности.

Включение останавливали добавлением равного объема холодной 10% ТХУ, содержащей 200 µмол. смеси С¹²-аминокислот (в случае С¹⁵гидролизата белка хлореллы) или 10 µмол. С¹²-лейцина (для С¹⁴-лейци-

Таблица 2 Действие хлорамфеникола и циклогексимида на белоксинтезирующую систему цитоплазмы S, oncopelti

		шзат белка едлы	С14-лейцин		
Условия	имп/мин на 1 мг белка	% ингиби- рования	имп/мин на 1 мг белка 5540 5527 1000 113	% ингиби- рования	
Полная система С хлорамфениколом С циклогексимидом С рибонуклеазой Без энергетической системы	10 067 9750 4817 212 357	3 82 98 96	5527 1000	0,2 82 98 96	

Примечание. Состав инкубационной среды (в μмол. на 1 мл): трис-НСі буфер, рН 7,6 50; MgCl₂ 6; КСl 50; β-меркантоэтанол 5; ФЭП 5; АТФ 2; ЦТФ 0,25; ГТФ 0,25; УТФ 0,25; ФЭП-киназа 20 мг; рибосомы 1,25 мг белка; «рН 5-фракция» 1 мг белка; см-гидролизат белка хлореллы 1 μС; См-лейцин 1 μС; смесь См-аминокислот без лейцина 0,5 каждой; хлорамфеникол и циклогексимид — по 100 μг; РНКаза 20 μг. Результаты — среднее из двух повторностей.

на). Радиоактивный осадок несколько раз промывали холодной 5% ТХУ и обрабатывали 5% ТХУ при 90°, в течение 15 мин. Затем суспензию белка наносили на мембранные фильтры (Хемапол, ЧССР) с 3-кратной промывкой 5% ТХУ. Радиоактивность просчитывали на жидкостном сцинтилляционном счетчике Mark-1 с эффективностью 70%.

В табл. 1 представлены данные по влиянию хлорамфеникола и циклогексимида на включение С¹⁴-гидролизата белка хлоредлы и С¹⁴-лейцина в белки изолированных кинетопластов S, oncopelti. При этом кинетопласты были выделены или дифференциальным центрифугированием с обработкой рибонуклеазой (опыт № 1), или очищены центрифугированием

в линейном градиенте концентрации сахарозы (опыт № 2).

Из табл. 1 видно, что хлорамфеникол почти полностью подавляет включение С¹⁴-аминокислот (гидролизат белка хлореллы), а также С¹⁵-лейцина в белок кинетопластов, в то время как циклогексимид практически не снижает включения. Инкубация кинетопластов с С¹⁴-лейцином в присутствии обоих антибиотиков дает такое же низкое включение, как и при инкубации с одним хлорамфениколом. Отсюда следует, что включение меченой аминокислоты происходит в процессе синтеза белка, осуществляемого не цитоплазматическими, а кинетопластными рибосомами.

В опыте № 2 (табл. 1), где использовали кинетопласты, очищенные центрифугированием в линейном градиенте концентрации сахарозы, наблюдалось наиболее интенсивное включение С¹⁴-лейцина, что объясняется, вероятно, отсутствием балластных белков в препарате. Характер действия двух антибиотиков на белоксинтезирующую систему кинетопласта как в опыте № 1, так и № 2 был сходный. Интересно, что присутствие РНКазы в инкубационной среде привело лишь к незначительному снижению включения С¹⁴-лейцина в изолированные кинетопласты. Отсутствие в среде энергетической системы (всех нуклеозидтрифосфатов, фосфоэнолиирува-

та и фосфоэнолпируваткиназы) в сильной степени подавляло включение меченых аминокислот, что указывает на зависимость процесса синтеза белка в изолированных кинетопластах от обеспеченности энергией в виде ATO.

В табл. 2 приведены результаты действия двух антибиотиков на включение смеси С¹⁴-аминокислот (гидролизат белка хлореллы) и С¹⁴-лейцина в рибосомы цитоплазмы S. опсореltі. Полученные данные указывают, что цитоплазматические рибосомы, выделенные из клеток зоофлагеллята, устойчивы к хлорамфениколу, но весьма чувствительны к циклогексимиду. Без энергодающей системы и при наличии в инкубационной среде РНКазы цитоплазматические рибосомы не включают метку в белок.

Полученные нами результаты относительно действия антибиотиков на белоксинтезирующий аппарат цитоплазмы S. oncopelti хорошо согла-

суются с литературными данными (6).

Таким образом, рибосомы изолированных кинетопластов S. опсорей оказались чувствительными к действию хлорамфеникола и устойчивыми к циклогексимиду. Влияние этих антибиотиков на рибосомы цитоплазмы и кинетопластов противоположно. Этот факт служит важным доводом в пользу существования автономного белоксинтезирующего аппарата в кинетопластах трипанозомид. Эти результаты могут свидетельствовать также о том, что рибосомы кинетопластов трипанозомид по ряду свойств сходны с рибосомами эукариота.

Московский государственный университет им. М. В. Ломоносова Поступило 10 VIII 1970

цитированная литература

¹ В. Д. Каллиникова, Усп. совр. биол., 64, 75 (1967); Цитология, 11, 681 (1969). ² G. G. Hill, W. A. Anderson, J. Cell Biol., 41, 547 (1969). ³ В. А. Чугунов, Г. Н. Зайцева, ДАН, 192, 672 (1970). ⁴ S. Nass, Intern. Rev. Cytol., 25, 55 (1969). ⁵ D. B. Roodyn, D. Wilkie, In: The Biogenesis of Mitochondria, Great Britain, 1968. ⁶ J. K. Chesters, Biochim. et biophys. acta, 114, 385 (1966). ⁷ D. Kahan, A. C. Zahalsky, S. H. Hutner, J. Protozool., 15, 385 (1968). ⁸ J. Eisenstadt, G. Brawerman, Biochim. et biophys. acta, 80, 463 (1964). ⁹ A. H. Reisner, H. Macindoe, J. Gen. Microbiol., 47, 1 (1967). ¹⁰ J. Mager, Biochim. et biophys. acta, 38, 150 (1960). ¹¹ J. L. Rosenbaum, G. G. Holz, J. Protozool., 13, 115 (1966). ¹² G. R. Seaman, Biochim. et biophys. acta, 55, 889 (1962). ¹³ A. B. Ильин, A. B. Шульга и др., Докл. высш. школы, биол. науки, 9, 118 (1968). ¹⁴ М. В. Ноадland, Е. В. Кеller, Р. Zamecnik, J. Biol. Chem., 218, 345 (1956). ¹⁵ H. Küntzel, Nature, 222, 142 (1969).