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Abstract— The current paper uses neural network 

modeling and a genetic algorithm to determine the values of 

technological parameters that ensure effective laser cleaving of 

quartz glass when exposed to a laser beam with a wavelength 

equal to 10.6 µm and a refrigerant. Multi-criteria optimization 

of laser cleaving of quartz plates was performed according to 

the criteria of maximum tensile stresses and maximum 

processing speed. 
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I. INTRODUCTION 

The main methods of separating brittle nonmetallic 
materials are cutting with diamond discs, mechanical and 
laser scribing. Another effective method of cutting such 
materials, including quartz glass, is controlled laser 
cleaving. The implementation of this technology is based on 
the formation of a certain spatial localization of 
thermoelastic stresses in the processed material, which 
ensures the formation of a separating crack with specified 
parameters The advantages of this technology include high 
accuracy and high speed of laser-induced cuts [1-3]. 

Currently, artificial neural networks are successfully 
used for modeling the laser processing of materials [4-6]. 
An important way to improve the efficiency of laser 
technology application is to optimize the corresponding 
technological parameters. The examples of optimization 
implementation including the use of genetic algorithms are 
presented in [7–9]. Genetic algorithms are a special case of 
evolutionary methods, which are based on collaborative 
learning within a population and use simulation of natural 
selection. Genetic algorithms provide the search for better 
solutions by inheriting and enhancing beneficial properties 
of many objects in the process of simulating their evolution 
[10].  

This paper uses neural network simulation and the 
authors’ version of the modified genetic algorithm (MGA) 
to perform a multi-criteria optimization of laser cleaving of 
quartz plates [11]. 

II. NEURAL NETWORK APROXIMATION 

The calculations of temperature fields and thermoelastic 
stress fields performed in [6] were used to generate the data 
for training and validating neural networks. The total 
number of samples was 875. All data were normalized and 
adjusted to specific range [0;1]. The following factors were 
used in the problem under consideration: V is the cutting 
speed, A and B are the semi-axes of the elliptical laser 
beam, P is the power of the laser radiation. The following 

responses were selected for study:      — the maximum 

tensile stresses, T — the maximum temperature. This study 
involved the construction of neural network approximators 

for the parameters     and T.  

When addressing problems through the use of neural 
network simulation tools, a crucial consideration relates to 
the selection of an appropriate neural network architecture. 
The process of choosing the appropriate neural network 
architecture in each case is complex. The simplest approach 
to handling this issue is to implement a search scheme that 
explores several candidate architectures and assesses their 
effectiveness in resolving the specific problem via cross-
validation. 

The procedure for identifying the optimal neural 
network architecture through a search process encompasses 
the subsequent stages: 

1) Preparation of input data for training and validating 

neural networks. 

2) The process of generating a set of architectures and 

corresponding candidate models for the purpose of 

conducting a search.  

3) Training and cross-validation of neural network 

models. 

4) Selection of the optimal architecture based on the 

specified criteria following the calculated cross-validation 

metrics. 
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Neural networks as well as their training algorithms and 
cross-validation algorithms are implemented using the Keras 
library in Python.  

 

Fig. 1. Example of training and validation metrics (MSE, MAE,   ) 

changes when  training a model-candidate for     approximation 

within a single cross-validation experiment 

Three-layer perceptrons of different configurations were 
compared to select optimal neural network architectures for 

approximating     and T responses. The number of neurons 

in the first and second hidden layers was searched in the 
range of 8 to 96 with an incremental step-size 4. A five-fold 
cross-validation procedure was conducted for each 
candidate architecture, whereby the input data were divided 
into five subsets and randomly mixed prior to analysis. The 
metrics MSE (mean square error), MAE (mean absolute 
error), R

2
 (determination coefficient) were averaged over all 

experiments. Figure 1 depicts a typical example when the 
metrics of a neural network model undergo modifications 
throughout the training process. 

Figures 2 and 3 present the heat maps depicting the 
distributions of MSE and R

2
 values for the approximators of 

    and T, respectively. The horizontal axis represents the 

number of neurons in the first hidden layer, while the 
vertical axis denotes the number of neurons in the second 
hidden layer. Table 1 provides examples of metric values for 
the most optimal architectures of the     response 

approximator.  

TABLE I.  VALUES OF MSE, MAE AND R2
 METRICS FOR THE MOST 

OPTIMAL CANDIDATE ARCHITECTURES OF THE     APPROXIMATOR.. 

Neural network 

architecture 
MSE MAE R

2
 

Number 

of epochs 

[88-84-1] 4.103e-05 0.00267 0.9969 608.04 

[88-88-1] 4.138e-05 0.00266 0.9968 595.88 

[96-76-1] 4.490e-05 0.00287 0.996 559.4 

 

The numerical experiments revealed that the artificial neural 

network with [64-56-1] architecture provides the most 

accurate results when approximating σyy, and the artificial 

neural network with [88-84-1] architecture shows the best 

results when approximating temperature T. 

 

Fig. 2. Temperature maps showing MSE (left) and    (right) distributions 

for the cross-validated      approximators (x axis represents number 

of neurons in the first hidden layer, y axis represents number of 

neurons in the second hidden layer) 

 

Fig. 3. Temperature maps showing MSE (left) and    (right) distributions 

for the cross-validated    approximators (x axis represents number of 

neurons in the first hidden layer, y axis represents number of neurons 

in the second hidden layer) 

III. DETERMINING THE OPTIMAL PARAMETERS FOR THE 

LASER CLEAVING PROCESS OF QUARTZ PLATES 

Using neural networks with architectures [64-56-1] for 

approximating     and [88-84-1] for approximating T, a 

search was conducted for the values of factors that provide 

the maximal values of stresses     provided V  max and 

under the temperature constraint T<1473 K. Restrictions 
were also imposed on factor values going outside the ranges 
in the training set of neural network approximators.  

The authors’ version of the modified genetic algorithm 
(MGA) was developed in Python [11]. The process of 
creating further generations of the population was derived 
from the genome crossing technique outlined in reference 
[11]. Additionally, genome mutation was achieved by 
introducing random changes in factors within the range of 
[0.0001,0.1] with the probability      .  

The objective function included the     and T values and 

the V factor predicted by neural network approximators. 

Furthermore, penalties were included for exceeding 

permissible ranges of factors and maximum temperature 

values:  
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An alternative objective function is also considered: 
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Figure 4 depicts the process of multi-criteria 
optimization using the authors’ genetic algorithm. The graph 
illustrates a monotonic decrease in the values of the 
objective function (solid line) for the best genome within the 
population denoted by points (A,B,V,P). The increase in the 
average value of the objective function over the population 
(dashed line) at the conclusion of the algorithm operation 
can be attributed to the genomes approaching the specified 
boundaries (especially by temperature) and, consequently, to 
the output penalties     . No significant difference in the 
convergence rate and quality of the algorithms was found 
when comparing the provided objective functions. 

 

Fig. 4. The convergence procedure of the genetic algorithm when solving 

the problem of multicriteria optimisation of quartz plate cleaving 

parameters.  

The use of genetic algorithms led to the identification of 
the optimal values of the factors, as presented in Table 2. A 
finite element calculation was conducted to investigate the 
laser cutting process of a quartz plate with the optimal 
values of the factors. It is demonstrated that the values of 
stress σyy and temperature T established by the 
approximators and MGA are determined with errors of 0.1% 
and 2.5%, respectively. 

TABLE II.  MULTICRITERIA OPTIMIZATION RESULTS. 

V 

 mm/s 

A 

 mm 

B 

 mm 

P 

 W 

T 

 K 
σyy, MPa 

70 1.4 0.8 299 1471 7.2 

 

V 

 mm/s 

A 

 mm 

B 

 mm 

P 

 W 

T 

 K 
σyy, MPa 

69.9 1.35 0.8 299.9 1472.45 7.24 

    (1435.31) (7.23) 

(нижняя таблица содержит результаты из ПМФТ, 
вторая строка – проверенные в ансисе значения. верхняя 
– из тезисов, более ранние результаты – В.П.) 

IV. CONCLUSION 

This study presents a multicriteria optimization of the 
responses of the laser cutting process for quartz plates using 
neural network simulation. The optimal values of laser 
cutting factors for quartz plates have been determined and 
the correspondence between the model and the results of 
finite element analysis has been established. A search 
method with cross-validation was used to describe the 
algorithms for selecting the optimal neural network 
architecture. The optimal neural network architectures have 
been determined for approximating the maximum of tensile 
stresses and the maximum of temperature when performing 
laser cutting of quartz plates. 
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