УДК 541.127:543.51

ФИЗИЧЕСКАЯ ХИМИЯ

И. О. ЛЕИПУНСКИЙ, И. И. МОРОЗОВ, член-корреспондент АН СССР В. Л. ТАЛЬРОЗЕ

МАСС-СПЕКТРОМЕТРИЧЕСКОЕ ИЗМЕРЕНИЕ КОНСТАНТ СКОРОСТИ РЕАКЦИЙ АТОМОВ ВОДОРОДА И ФТОРА С ИОДИСТЫМ МЕТИЛОМ И ТРИФТОРИОДМЕТАНОМ

Многие реакции атомного водорода и атомного фтора высоко экзотермичны. Особый интерес поэтому представляют реакции, которые могут протекать по двум или более экзотермическим каналам.

В настоящей работе изучены реакции атомного водорода и фтора с иодистым метилом и иодистым трифторметилом. В этих случаях возможны следующие экзотермические реакции:

> 1. $H + CH_3J \xrightarrow{k_1} \xrightarrow{1a} CH_4 + J^{\bullet} - \Delta H = 48,9 \text{ KRAJ/MOJL}$ 1. $H + CH_3J \xrightarrow{k_1} \xrightarrow{1b} CH_3 + HJ - \Delta H = 18,6$ 2. $H + CF_3J \xrightarrow{k_2} \xrightarrow{2b} CF_2J + HF - \Delta H = 13$ 2. $H + CF_3J \xrightarrow{k_3} \xrightarrow{2b} CF_3H + J - \Delta H = 46$ 2. $CF_3 + HJ - \Delta H = 46$ 2. $CF_3 + HJ - \Delta H = 20$ 3. $F + CH_3J \xrightarrow{k_3} \xrightarrow{CH_3F} HJ - \Delta H = 85$ 3. $F + CH_3J \xrightarrow{k_4} \xrightarrow{3b} CH_3F + J - \Delta H = 68$ 3. $F + CF_3J \xrightarrow{k_4} \xrightarrow{4a} CF_4 + J - \Delta H = 17$ 4. $F + CF_3J \xrightarrow{k_4} \xrightarrow{4a} CF_4 + J - \Delta H = 54$ 4. $F + CF_3J \xrightarrow{k_4} \xrightarrow{4b} CF_3 + JF - \Delta H = 10$

(теплоты реакций вычислены по $\binom{1}{2}$). Данные об абсолютных и относительных значениях констант скорости всех этих реакций в литературе отсутствуют. Реакции За и Зb предполагались $\binom{3-6}{9}$ входящими в цепной механизм фторирования иодистого метила молекулярным фтором. Каналы, ведущие к образованию атомного иода с теплотой более 22 ккал/моль (энергии возбуждения иода $^{2}P_{4b}$), представляют также интерес в связи с обнаруженным в (⁷) образованием атомного иода в состоянии $^{2}P_{4c}$ в реакции H + HJ = H₂ + J, что существенно для попыток создания химических лазеров на электронных переходах. Так, например, И. И. Собельман и сотрудники предположили недавно (⁸), что в генерацию фотодиссоциативного лазера на CF₃J вносит вклад образование возбужденного J во вторичной реакции: 'CF₃J + CF₃ (горячий) = C₂F₆ + J^{*}.

В приведенный выше перечень возможных реакций включены реакции с образованием JF. Это соединение остается единственным двухатомным межгалоидным соединением, о выделении которого в качестве индивидуального стабильно существующего вещества пока не сообщалось (^b). Однако в пламенах при горении во фторе подистых этила и метила (¹⁰, ¹¹) монофторид пода был обнаружен по оптическому спектру, а в продуктах термического разложения пентафторида — и масс-спектрометрически (¹²).

В настоящей работе был применен метод масс-спектрометрического зондирования диффузионного облака в потоке (¹³⁻¹⁸). Реакции осуществлялись в быстром нотоке гелия. Атомы фтора и водорода получали в высокочастотном разряде диссоциацией молекул F₂ и H₂, добавлявшихся в небольших количествах к потоку гелия. Иодиды, разбавленные гелием, подавались по тонкому капилляру, расположенному на оси реактора, образуя диффузионное облако.

Чистота всех использовавшихся иодидов была лучше 99% и контролировалась масс-спектрометрически. Все измерения проводились при 293 ± 2° К и давлении в зоне реакции в несколько тор, при относительном содержании реагентов в газе-носителе ~ 10% для атомов и ~ $10^{-1} - 10^{-2}$ для иодидов, при времени контакта ~ $10^{-3} - 10^{-4}$ сек. Исключенность вторичных реакций в условиях опытов всюду специально проверялась. Измерения константы скорости реакций проводились по расходу иодидов в соответствующих реакциях, выявление каналов реакций но составу получающихся продуктов.

1. Реакция Н + СН₃J. Измерения проводились при давлении Не в зоне реакции 2, 4 тор и составе смеси у капилляра: [H₂] = 3,3 · 10¹⁵ молек/ /см³, [H] = 2,8 · 10¹⁵ ат/см³, [CH₃J] ~ 10¹² молек/см³. Водород и гелий очищались, как и в (¹⁵).

• Результаты измерений распределения концентрации иодистого метила вдоль оси реактора представлены на рис. 1а $(h_{142}^{0}$ — высота пика иона m/e 142 в отсутствие атомов Н, h_{142} — в присутствии, x — расстояние между концом капилляра и напускным конусом). Видно, что экспериментальные точки хорошо ложатся на прямую, что в данном методе соответствует хорошему выполнению условий «диффузионного облака». Вычисление константы скорости реакции в соответствии с формулой (1) работы (¹⁵) приводит к значению $k_1 = (4 \pm 1) \cdot 10^{-12}$ см³/молек · сек.

На рис. 16 показано изменение интенсивности ряда линий в масс-спектре реагирующей смеси. Появление в реакции молекул НЈ (ион *m / e* 128) и отсутствие (в пределах точности эксперимента) линии метана *m / e* 16 (CH₄⁺) свидетельствует о том, что в реакции подавляющим образом представлен канал 1*b*, и k_{1b} = k₁ с точностью лучше 10%.

Экспериментальные данные позволили определить коэффициент диффузии подистого метила в гелии, $D = 0.31 \pm 0.05$ см²/сек при P = 1 атм.

2. Реакция Н + СГ₃J. Реакция изучалась в тех же условиях, что и предыдущая. Измерения суммарной константы скорости реакции атомов Н с СГ₃J проведено не было из-за сильных колебаний концентрации атомов Н, обусловленных нестабильностью состояния поверхности трубки, подводящей атомы, из-за ее покрывания стабильными продуктами реакции.

Изменение интенсивности ряда линий в масс-спектре реагирующей смеси показано на рис. 2. Присутствие в масс-спектре продуктов реакции сравнительно интенсивных линий m/e 128 (HJ⁺), m/e 20 (HF⁺), а также относительные интенсивности линий 177 (CF₂J⁺) и 69 (CF₃⁺) говорит о наличии каналов 2*a* и 2*c*. Линия m/e 127 (J⁺) на 70% обусловлена диссоциативной ионизацией НЈ. Оставшиеся 30% могли бы в принципе составлять вклад ионизации атомного иода и диссоциативной ионизации CF₂J.

В масс-спектре CF₃H (¹⁷) интенсивность линии m/e 50 в три раза меньше, чем линии m/e 31 (CF₄⁺), однако линии m/e 31 в масс-спектре продуктов реакции обнаружено не было, следовательно, линия m/e 50 (CF₂⁺) принадлежит масс-спектру свободного радикала CF₂J и основной вклад в реакцию дают каналы 2a и 2c.

3. Реакция F + CF₃J. Реакция изучалась при давлении в зоне реакции 3.5 тор. Состав смеси у капилляра: [F] = 1,3 · 10⁴⁴ ат/см³, [CF₃J] ~ ~ 10⁴² молек/см³. Результаты измерений распределения концентрации иодистого метила вдоль оси реактора представлены на рис. За. Экспериментальные точки хорошо ложатся на прямую, что свидетельствует о хорошем выполнении условия «диффузионности». Вычисленная константа скорости из наших данных: k₃ = (2 ± 0,7) · 10⁻¹⁰ см³/молек · сек. На рис. Зб приведено изменение ряда основных линий масс-спектра в реагирующей смеси. Было замечено, что с увеличением расстояния x, одновременно с падением тока ионов m/e 142 (CH₃J⁺) наблюдалось более медленное, нежели для пика m/e 142, падение тока ионов m/e (CH₂J⁺), что указывает на образование в реакции свободного радикала CH₂J. Образование в реакции монофторида иода говорит в пользу существования канала Зс. Пик иона m/e 34 (CH₃F⁺) не появляется, что свидетельствует о

Рис. 1

Рис. 2

Рис. 1. Распределение концентрации иодистого метила вдоль оси реактора в реакции с атомами Н (a) и изменение некоторых линий масс-спектра реагентов в реакции 1 (б). Здесь и на рис. 2—4: сплошные линии — до реакции, пунктирные — в ходе реакции

Рис. 2. Изменение некоторых основных линий масс-спектра реагентов в реакции 2

том, что в пределах чувствительности опыта в реакции не образуется молекулы CH₃F. На основании наших экспериментальных данных и табличного масс-спектра (¹⁷) CH₃F можно утверждать, что канал 3b может быть исключен с точностью ~ 30% и, следовательно, $k_3 = k_{3a} + k_{3e} > k_{3a}$.

К сожалению, не может быть вычислено значение k_{3a} и k_{3c} , поскольку данные о коэффициенте чувствительности масс-спектрометра к свободным радикалам и монофториду иода отсутствуют, неизвестны также их массспектры и поэтому нельзя было установить, обусловлено ли отсутствие падения интенсивности линии атомного пода образованием в реакции атомов иода или тем, что линия ионов атомного иода в масс-спектре радикала СН₂J относительно интенсивнее, чем в масс-спектре молекулы CH₂J.

4. Реакция F + CF₃J. Реакция изучалась при тех же условиях, что и предыдущая. Результаты измерений распределения концентрации CF₃J вдоль оси реактора представлены на рис. 4*a* (h_{194}^{0} — высота пика *m* / *e* 196, соответствующего основному иону молекулы CF₃J, в отсутствие атомов фтора, а h_{196} — в их присутствии). Вычисление константы скорости реакции дает: $k = (1,7 \pm 0.6) \cdot 10^{-10}$ см³/молек · сек.

Экспериментальные данные позволили вычислить коэффициент диффузии CF₃J в гелии $D = 0.32 \pm 0.05$ см²/сек при P = 1 атм. (¹⁸).

На рис. 46 видно резкое падение пика m/e 196 (CF₃J) в реакции, уменьшение пика m/e 127 (J⁺) примерно в два раза и появление интепсивного пика с массой 146, соответствующего иону JF⁺. Отсюда можно сделать вывод, что главным каналом в реакции является канал 4b. Даже если ион J⁺ в масс-спектре продуктов полностью обусловлен образованием атомного иода и диссоциативной ионизацией непрореагировавшего CF₃J.

Рис. З. Распределение концентрации иодистого метила вдоль оси реактора в реакции с атомами фтора (а) и изменение некоторых основных линий массспектра реагентов в реакции 3 (б)

Рис. 4. Распределение концентрации трифторподметана вдоль оси реактора в реакции с атомами фтора (а) и изменение некоторых основных линий масс-спектра реагентов в реакции 4

нода * и преобладающее значение дальнодействия электронной оболочки пода при подходе атома, скажем, перпендикулярно к связи С-J. Отсюда следует также, что реакция замещенных и незамещенных алкилиодидов с атомами и, тем более, с многоатомными радикалами, приводящая к образованию атомного пода как в состоянии ²Р³/1, так и в состоянии ²Р 4, медленная, и если при реакционном столкновении партнеров имеется другой оолее выгодный канал, то реакция должна идти по нему.

Институт химической физики Академии наук СССР

Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ЦИТИРОВАННАЯ ЛИТЕРАТУРА ¹ Н. Н. Семенов, О некоторых проблемах химической кинетики и реакцион-ной способности, М., 1958, стр. 41. ² Энергии разрыва химических связей (спра-вочник), под ред. В. Н. Кондратьева, М., 1962. ³ Л. Ю. Русин, А. М. Чайкин, А. Е. Шилов, Кинетика и катализ, 5, 1121 (1964). ⁴ В. И. Веденеев, А. М. Чайкин, Н. Е. Шилов, Кинетика и катализ, 4, 320 (1962). ⁵ Г. А. Капралов, ва, Е. М. Трофимова и др., Кинетика и катализ, 4, 654 (1963). ⁶ А. Е. Шилов, Сборн. Химическая кинетика и ценные реакции, под ред. В. Н. Кондратьева, «Наука», 1966, стр. 233. ⁷ Ј. С. Ројапуј, Р. Саймап, Ј. Рhys. Chem., 72, 3715 (1968). ⁸ Т. Андреева, В. Малышев, А. Маслов, И. И. Собельман, В. Сорокин, Письма ЖЭТФ, 10, 423 (1969). ⁹ Н. С. Николаев, В. Ф. Суховерховиде, Хи-мия галоидных соединений фтора, М., 1967, стр. 247. ¹⁰ В. А. игіе, Ргос. Phys. Soc., 63A, 1298 (1950); Ргос. Roy. Soc., 207A, 388 (1951). ¹¹ Л. Ю. Русин, Журн. прикл. спектроскоп, 4, 117 (1966). ¹² А. F. Irsa, L. Friedman, J. Inorg. and Nucl. Chem., 6, 77 (1958). ¹³ А. Ф. Додонов, Г. К. Лавровская, В. Л. Тальро-ае, Кинетика и катализ, 10, 78 (1969). ¹⁴ А. Ф. Додонов, Кандидатская диссер-тацая, М., 1968. ¹⁵ А. Ф. Додонов, Г. К. Лавровская и др., Кинетика и катализ, 11, 821 (1970). ¹⁶ А. Ф. Додонов, Г. К. Лавровская и др., Кинетика и катализ, 11, 821 (1971). ¹⁷ Index of Mass Spectral Data, АSTM, Philadelphia, 1963, р. 356. ¹⁶ И. М. Белоусова, В. М. Киселев, В. Н. Курзенков, ЖТФ, 40, в. 2, 402 (1970). (1970).

* С выворачиванием тетраэдра.

1370

Поступило 1 II 1971

атому

т. е. если в масс-спектре JF нет осколка J+ (чего на самом деле быть не может), то учитывая, что сечение ионизации JF во всяком случае не меньше, чем сечение ионизации атомного иода, получаем $k_{4a}/k_{4b} < 0.3.$

Из полученных данных следует, что во всех рассмотренных реакциях наименее представленным. или вообще исключенным, оказывается путь с образованием атомного иода, наиболее выгодной в большинстве случаев энергетически.

Таким образом, в этих реакциях мы имеем дело со случаем, когда главным при выборе реакций направления является HO тепловой эффект, а пракневозможность тическая реакции с выбросом атома иода при переходе атома к молекуле со стороны, противоположной