УДК 539.2

Н. М. ОМЕЛЬЯНОВСКАЯ, С. Я. ЛЕБЕДЕВ, О. И. КАПУСТА

ЭФФЕКТ РЕЛАКСАЦИИ ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ ПРИ ВЗАИМОДЕЙСТВИИ ИОНОВ АРГОНА С ПОВЕРХНОСТЬЮ Ge и InAs

(Представлено академиком В. Л. Гинзбургом 7 Х 1970)

При изучении ионно-электронной эмиссии (и.-э.э.) некоторых полупроводниковых монокристаллов с отожженными дефектами нами было обнаружено различие в значениях коэффициентов и.-э.э. ү_в, измеряемых сразу же после совмещения направления падения пучка ионов с тем или иным кристаллографическим направлением монокристалла, и его равновесным

Рис. 1. Зависимость у_э(ф) при бомбардировке грани (111) германия ионами аргона с эпергией 70 кэв (ось вращения <110>) при температуре 424° С значением у_{вр}, которое устанавливалось спустя некоторое время. Ясно, что наличие этого эффекта обусловлено какими-то релаксационными процессами, происходящими в приповерхностном слое мишени и влияющими на ее прозрачность по отношению к падающему пучку ионов. Подробное исследование этого эффекта представляет интерес, поскольку оно может дать информацию о подвижности радиационных дефектов, возникающих в поверхностном слое.

Измерения были проведены на кристаллах Ge и InAs. Приготовленные срезы по плоскостям (111) предварительно сошлифовывались, стравливались и тщательно промыва-Ориентация их, после закрепления ЛИСЬ. в специальный держатель для мишени, проверялась на рентгеновской установке УРС-55И. Отклонение поверхности от желаемой плоскости не превышало 1°. Для измерений использовался ионный пучок установки ИЛУ-100 (1). Измерения коэффициентов уз проводились в специальном экспериментальном устройстве, описанном в (²). Вакуум вблизи мишени, благодаря дополнительному охлаждению коллектора электронов, в рабо-

чих условиях составлял $(5-6) \cdot 10^{-7}$ мм рт. ст. Используемые плотности тока ионов $j \simeq (0,6-1)$ ма/см². Температура образцов измерялась хромельалюмелевой термопарой, спай которой закреплялся в глухом отверстии, просверленном в мишени с помощью электроэррозионного сверлильного станка.

Эксперимент проводился следующим образом. Устанавливался некоторый угол φ_1 , под которым происходила бомбардировка образца в течение времени, достаточного для установления равновесного состояния. После этого производилось быстрое изменение угла падения пучка до совмещения направления падения пучка с необходимым кристаллографическим направлением (φ_2). В момент этого совпадения происходило включение секундомера и снималась зависимость γ_0 от времени бомбардировки в этом направлении. Все описанные переходы от φ_1 к φ_2 как для кристалла InAs, так и для Ge происходили в плоскости (110). С целью облегчить понимание приводимых временных зависимостей уна рис. 1 представлена кривая угловой зависимости коэффициента и.-э.э. для Ge при повороте вокруг оси (110). Качественно такая же зависимостьимеет место и для монокристалла InAs (³).

На рис. 2 показаны изменения γ_{δ} со времени t для трех различных направлений падения ионного пучка на кристалл InAs, соответствующих прозрачным направлениям (111) и (110) и максимуму на кривой $\gamma_{\delta} = f(\varphi)$ при $\varphi_{z} = -26^{\circ}$. Как видно из рис. 2, *1*, *2*, начальные значения γ_{δ} , измеренные в направлениях (111) и (110), значительно меньше величины $\gamma_{\delta p}$. При

Рис. 3. Зависимости $\gamma_{0}(t)$ при бомбардировке грани (111) германия ионами аргона с энергией 70 ков в паправлении (111) (угол первоначальной бомбардировки $\varphi_{1} = 58^{\circ}$ в плоскости (110)) при различных температурах: $I = -329^{\circ}, 2 - 456^{\circ}, 3 - 572^{\circ}, 4 - 683^{\circ}$

температуре 170° эти равновесные значения устанавливаются за время порядка 1 мин. За это же время происходило и установление равновесной величины γ_{9p} в максимуме при $\varphi_2 = -26^\circ$ (рис. 2, 3), которое в отличие от предыдущего случая меньше величины γ_9 , измеренной в первые секунды. (Отметим, что переход в этот максимум осуществляется из минимума, соответствующего направлению $\langle 111 \rangle$).

Здесь же показаны изменения γ_{s} во времени, полученные при $T = 420^{\circ}$ (рис. 2, 1', 2', 3'). Видно, что при этой температуре процессы установления γ_{s} происходят значительно быстрее (25—40 сек.).

Аналогичные процессы происходят и в монокристалле Ge. На рис. З показаны временные изменения у_в в направлении (111) при четырех различных температурах. С ростом температуры время установления равновесного значения у_{вр} уменьшается, а при температуре 683° эффект «заплывания» канала практически не наблюдается.

Как показали проведенные эксперименты, характер изменения временных зависимостей в сильной степени зависел от предыстории облучения образца, т. е. от угла φ_1 , под которым происходила бомбардировка образца перед совпадением направления падения цучка с исследуемым кристаллографическим направлением (в максимуме или минимуме кривой угловой зависимости), а также и от того, насколько близки были этим минимумы или максимумы к выбранному каналу (рис. 4).

При всех переходах кривые, как правило, приходят к одному и тому же значению равновесной величины γ_{sp} . Наблюдаемое небольшое отклонениекривой 1 (рис. 4*a*) может быть связано с менее точной установкой угла падения ионов.

Наиболее сильные временные изменения у, происходят в случае переходов из максимума в минимум (рис. 4*в*, 5, рис. 4*б*, 1, 5). Особенно сильно уменьшается эффект «заплывания» канала при переходе к данному направлению из близкого минимума (рис. 46, 4; 46, 6). Интересным представляется также изменение γ_s во времени для максимума кривой $\gamma_s(\varphi)$ при $\varphi_2 = 14^\circ$. Как видно из рисунка, при переходе к этому направлению как из минимума $\varphi_1 = 54^\circ$, так и из направления $\varphi_1 = 58^\circ$, т. е. из скользящих направлений первоначальной бомбардировки, γ_s растет во времени (рис. 4a, 1, 2), а при переходе из минимумов при $\varphi_1 = 0$ (рис. 4a, 6) и $\varphi_1 = 20^\circ$ (рис. 4a, 3) γ_s сначала растет, а затем начинает падать.

Характерной особенностью кривых, полученных при бомбардировке Ge, является немонотонный характер церехода от начального к равновес-

Рис. 4. Зависимости $\gamma_{9}(t)$ при бомбардировке грани (111) германия нонами аргона с энергией 70 кэв. Переходы осуществлялись в плосчюсти (110). a — переход при T = $= 329^{\circ}$ к $\varphi_{2} = 14^{\circ}$, δ — при T = $= 445^{\circ}$ к $\varphi_{2} = 20^{\circ}$, s — при T = 445° к $\varphi_{2} = 0^{\circ}$ от $\varphi_{4} = 58^{\circ}$ (1), 54° (2), 20° (3), 18° (4), 14° (5), 0° (6)

пому значению узр. Такое поведение у может свидетельствовать о наличии в поверхностном слое двух различных процессов релаксации, влияющих на прозрачность мишени различным образом. Возможно, что такими релаксационными процессами могут быть процессы установления концентрации радиационных дефектов (атомы внедрения мишени и вакансии) и внедренных в решетку атомов Аг, соответствующих равновесному состоянию. Естественно считать, что при бомбардировке мишени в менее прозрачном направлении, поверхностная концентрация атомов мишени, находящихся в междоузлиях, в приповерхностном слое выше, чем в том случае, когда бомбардировка осуществляется в более прозрачном направлении. Поэтому при изменении направления пучка ионов от менее прозрачного к более прозрачному направлению, концентрация таких дефектов должна убывать, стремясь к своему равновесному значению, а прозрачность канала при этом должна увеличиваться. Следовательно, в этом случае механизм релаксации подобного рода дефектов должен приводить к уменьшению величины уз по сравнению с его первоначальным значением. Из тех же соображений следует, что при переходе от более прозрачного к менее прозрачному направлению вели-

чина у. должна возрастать по сравнению с ее первоначальным значением.

Иной характер влияния на величину у_о может быть обусловлен внедрением атомов аргона. В результате торможения падающих ионов в поверхностных слоях кристалла при бомбардировке его в менее прозрачном направлении на образование всякого рода дефектов (вакансии, внедренные атомы, термопики и т. п.) выделяется большее количество энергии, чем при бомбардировке его в более прозрачном направлении. Это обостоятельство при бомбардировке в менее прозрачном направлении должно приводить за счет различных процессов радиационно-стимулированной диффузии (⁴) к относительно большим коэффициентам диффузии атомов аргона, облегчать их выход из кристалла и, в конечном итоге, приводить к относительно меньшей величине их стационарной концентрации в приповерхностных слоях. К этому же выводу приводит и учет эффекта отражения ионов (см. (⁵)), в соответствии с которым при бомбардировке кристалла в менее прозрачном направлении в мишень внедряется меньшее количество атомов аргона, чем при бомбардировке в более прозрачном направлении.

Поскольку внедренные атомы аргона, так же как и атомы мишени, находящиеся в междоузлиях, должны уменьшать прозрачность каналов, то нри переходе цучка ионов из менее прозрачного направления в более прозрачное, концентрация атомов Ar в приповерхностном слое должна увеличиваться, прозрачность канала уменьшаться, а значение γ_s увеличиваться до своего равновесного значения γ_{sp} . Ясно, что обратная картина должна наблюдаться при переходе от более прозрачного направления в менее прозрачное.

Из полученных нами экспериментальных данных можно по порядку величины оценить величину коэффициента диффузии атомов аргона в исследуемых кристаллах.

Как уже указывалось, при переходе от более прозрачного к менее прозрачному направлению установление равновесного значения γ_{0} обусловлено диффузионным рассасыванием избыточной концентрации атомов аргона. Время этого рассасывания $\tau = l^{2} / D$, где D — коэффициент диффузии атомов аргона, а l — размер области приповерхностного слоя, в котором, в основном, они сосредоточены. Согласно (°), $l \simeq 300$ Å. В то же время из наших измерений следует, что при температуре 445° $\tau = 60$ сек. Следовательно, для коэффициента диффузии по порядку величины получаем $D \simeq 9 \cdot 10^{-15} / 60 = 1,5 \cdot 10^{-12}$ см²/сек.

С повышением температуры увеличиваются скорости отжига и коэффициенты диффузии радиационных дефектов и внедренных атомов аргона. Поэтому время установления равновесных значений у, должно уменьшаться. Последнее действительно наблюдалось нами для всех исследуемых образцов (рис. 2, 3).

Авторы глубоко признательны В. М. Аграновичу, а также Э. И. Михлину, В. А. Молчанову и Ю. В. Мартыненко за полезные дискуссии, В. Г. Радионовой, Л. А. Ждамировой, А. И. Степуре, Г. Г. Гунину, С. И. Куташеву и Г. Г. Игнатову за помощь в работе.

> Поступило 30 IX 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ С. Я. Лебедев, В. Е. Дубинский, О. И. Капуста, В. И. Кротов, Н. М. Омельяновская, С. Д. Панин, Приборы и техн. экси., № 4, 225 (1968). ² О. И. Капуста, С. Я. Лебедев, Н. М. Омельяновская, ФТТ, 12, № 4, 995 (1970). ³ О. И. Капуста, С. Я. Лебедев, Н. М. Омельяновская, Иав. АН СССР, сер. физ., ХХХУ, № 2, 261 (1971). ⁴ Дж. Динс, Дж. Винйард, Радиационные эффекты в твердых телах, ИЛ, 1960, стр. 135. ⁵ К. S. Nelson, М. W. Thompson, Phys. Mag., 8, № 94, 1677 (1963). ⁶ Н. Lutz, R. Sizmann, Phys. Lett., 5, 113 (1963).