УДК 517.53:517.947.42

MATEMATHKA

Р. И. СЕДО, А. В. СЫЧЕВ

О ПРОДОЛЖЕНИИ КВАЗИКОНФОРМНЫХ ОТОБРАЖЕНИЙ НА МНОГОМЕРНЫЕ ПРОСТРАНСТВА БОЛЬШЕЙ РАЗМЕРНОСТИ

(Представлено академиком М. А. Лаврентьевым 28 XII 1970)

Пусть R^h , $k\geqslant 3$,— k-мерное эвклидово пространство, \overline{R}^h — k-мерное мёбиусово пространство, полученное присоединением к R^h бесконечно удаленной точки, и $\varphi(x)\colon \overline{R}^{h-1}\to \overline{R}^{k-1}$ — произвольное квазиконформное отображение пространства R^{k-1} (при k=3— плоскости) на себя, заданное k-1 координатными функциями $\varphi_1(x),\ldots,\varphi_{k-1}(x)$, где $x=(x_1,\ldots,x_{k-1})$. Возникает вопрос, возможно ли продолжить $\varphi(x)$ до квазиконформного отображения $f\colon \overline{R}^h\to \overline{R}^h$ пространства \overline{R}^h на себя? В (¹) было доказано, что для k=3 такое продолжение возможно. В настоящей заметке дается утвердительный ответ на поставленный вопрос для произвольного $k\geqslant 3$, но для квазиконформных отображений, достаточно близких к конформным.

 \hat{T} еорема 1. Всякое квазиконформное отображение пространства R^{h-1} , $k \geqslant 3$, на себя, достаточно близкое к конформному, продолжается отображения полупространства $x_k \geqslant 0$ пространства

ва R^h на себя.

В доказательстве теоремы существенно используется следующая лем-

ма Ю. Г. Решетняка (²).

 Π е м м а. Для любого $\varepsilon > 0$ существует q_{\circ} такое, что для всякого q-квазиконформного отображения $\varphi(x)$, $\varphi(0) = 0$, $\varphi(\infty) = \infty$, пространства R^{k-1} , k > 3, на себя с $q \leqslant q_{\circ}$ найдется преобразование Мёбиуса L(x) такое, что

$$|\varphi(x) - L(x)| \le \alpha(\epsilon)$$
 der $|x| \le k - 1$, (1)

 $\varepsilon \partial e \ \alpha(\varepsilon) = \alpha(\varepsilon, k) \to 0 \ npu \ \varepsilon \to 0.$

Доказательство теоремы распространяет метод, развитый в (1) для k=3, на многомерные пространства и приводится по следующей схеме.

1. Находим вначале кусочно-аффинное квазиконформное отображение, переводящее полупространство $x_h \ge 0$ пространства \overline{R}^h на себя и совпадающее с $\varphi(x)$ во всех точках с координатами вида $(m_1, \ldots, m_{k-1}, 0)$, где m_1, \ldots, m_{k-1} — целые числа (дискретная проблема).

Решение дискретной проблемы состоит из следующих шагов:

а) во всех точках пространства \overline{R}^{h} с целыми координатами определяем дискретное отображение по формулам

$$f_{j}(m_{1},...,m_{k-1},n) = \frac{1}{(2n+1)^{k-1}} \sum_{\substack{|p_{i}| \leq n \\ i=1,...,k-1}} \varphi_{n}(m_{1}+p_{1},...,m_{k-1}+p_{k-1}), \quad (2)$$

$$j = 1,...,k-1.$$

$$f_{k}(m_{1},...,m_{k-1},n) = nC_{n}^{-1} \sum_{\substack{|p_{i}|,|q_{i}| \leq n,\\ i=1,...,k-1}} |\varphi(m_{1}+p_{1},...,m_{k-1}+p_{k-1}) - q_{i}| \leq n$$

$$- \varphi (m_1 + q_1, \ldots, m_{k-1} + q_{k-1}) |, \qquad (3)$$

$$C_n = \sum_{\substack{|p_i|, |q_i| \leqslant n, \\ i=1, \dots, k-1}} \sqrt{(p_1 - q_1)^2 + \dots + (p_{k-1} - q_{k-1})^2}.$$

Здесь p_i , q_i , $i=1,\ldots,k-1$,— всевозможные целые числа удовлетворяющие вышеуказанным неравенствам;

б) кубическую k-мерную решетку с узлами в точках с целыми координатами полупространства $x_h \geqslant 0$ подразделяем на тетраэдры с вершина-

ми в узлах решетки;

 в) используя (1)—(3), показываем, что каждый тетраэдр, натянутый на образцы вершин любого упомянутого в б) тетраэдра, имеет ту же ориентацию, что в исходный тетраэдр;

г) отсюда следует, что f продолжается до кусочно-аффинного отображе-

ния, совпадающего с ф в точках с целочисленными координатами;

 д) используя снова неравенство (1), формулы (2), (3), показываем, что продолженное отображение является квазиконформным.

2. Наконец, для целых $N\geqslant 0$ полагаем $\varphi_N(x)=\varphi\left(\frac{x}{N}\right)$ и пусть f_N — решение дискретной задачи для φ_N . Вводим отображение $\tilde{f}_N(x)=f_N(Nx)$; \tilde{f}_N совпадает с φ во всех точках $\left(\frac{m_1}{N},\ldots,\frac{m_{k-1}}{N},0\right)$ для целых m_1,\ldots,m_{k-1} . Последовательность $\{\tilde{f}_N\}$ в силу ее компактности имеет подпоследовательность, которая сходится к квазиконформному отображению, совпадающему с φ на гиперплоскости $x_k=0$.

Институт математики Сибирского отделения Академии наук СССР Новосибирск Поступило 20 XII 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ L. Ahlfors, Proc. Nat. Acad. Sci. U.S.A., 51, № 5 (1964). ² Ю. Г. Решетняк, ДАН, 152, № 2 (1963).