УДК 577.153.3

БИОХИМИЯ

А. И. СИЛАКОВА, С. Н. ПОЛИЩУК, К. Л. КОНОПЛИЦКАЯ

ВЫДЕЛЕНИЕ ЯДЕР ИЗ СЕРДЕЧНОЙ И СКЕЛЕТНЫХ МЫШЦ И ИХ ФЕРМЕНТАТИВНАЯ ХАРАКТЕРИСТИКА

(Представлено академиком А. В. Палладиным 18 VIII 1970)

К настоящему времени обмен веществ в ядрах изучен в разной степени для клеток разных тканей. Что касается мышечных волокон, то отсутствие простых и достаточно эффективных методов выделения их ядер привело к тому, что и до последнего времени в литературе имеются лишь отдельные сробщения, характеризующие химический состав их и ферментативную активность (1-6). Метод Шово и сотрудников, дающий хорошие результаты при выделении ядер из клеток таких органов, как печень, почки, тимус и др., согласно их данным, давал неудовлетворительные результаты при попытке использовать этот метод для выделения ядер из мышечных волокон (7-8). При этом следует отметить, что выделяемые рядом исследователей из мышечных волокон ядра часто были охарактеризованы лишь микроскопически (1, 5), что совершенно недостаточно для оценки их чистоты и биологической активности. В связи с этим достоверность полученных биохимических данных при использовании в качестве объекта исследования таких препаратов ядер невелика.

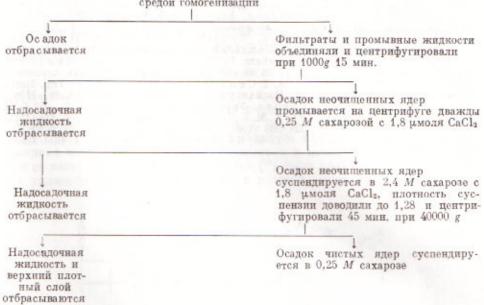
В настоящей работе описываются приемы, обеспечивающие выделение и очистку ядер из скелетных и сердечной мышц с воспроизводимыми параметрами, характеризующими их, а также дана характеристика некото-

рых сосредоточенных в них ферментативных активностей.

Ниже приводится схема основных этапов приемов, разработанных

нами для выделения ядер.

Особое внимание было уделено условиям гомогенизации: величина зазора в используемом стеклянном гомогенизаторе с тефлоновым пестиком составляла 0,45 мин., что обеспечивало достаточное освобождение из мышечных волокон неповрежденных ядер. В качестве гомогенизационной среды использовали 0,25 M раствор сахарозы, а не 2,2 M, как это имело место в исследованиях (7, 8). Известно, что гомогенизация ткани в концентрированных растворах сахарозы сопровождается значительным разогреванием, приводящим к повреждению структуры ядер (8). В условиях использования плотной сахарозы снижается и эффективность предварительного отделения миофибрилл и обрывков волокон фильтрованием гомогената.


Для очистки «сырого» препарата ядер, полученного при 1000 g, использовали 2,4 M раствор сахарозы с удельным весом 1,365. Конечную плотность суспензии ядер тщательно контролировали, доводя до величины не ниже 1,270—1,275 для сердечной и 1,280 для скелетных мыпц. Это условие в наибольшей мере влияет на степень очистки ядер цитоплазматических загрязнений. Последующее центрифугирование при 40 000 g в течение 45 мин. позволяло получить чистый препарат ядер.

Полученные по этой схеме ядра сохраняли свою целостность по данным световой и электронной микроскопии. Величины отношения РНК/ДНК, используемые для количественной оценки саркоплазматических примесей, составляли от 0,3 до 0,7 (10-13), что, согласно литературным данным, правда, для клеточных ядер иных тканей, свидетельствовало

о высокой степени их чистоты (2, 9, 14-16).

Схема выделения ядер из волокон скелетных и сердечной мышц (гомогенизация: 0,25 M сахарова с 1,8 μ моля CaCl₂; ткань: среда 1:9)

Фильтрование: сита 100 и 200 меш и двухразовое промывание осадка средой гомогенизации

Активности глюкозо-6-фосфатазы (КФ 3.1.3.9) и кислой фосфатазы (КФ 3.1.3.2) в ядрах мышц оказались низкими, составляя менее 3% общей активности этих ферментов в гомогенате в расчете на 1 г влажной ткани (табл. 1).

Однако удельная активность этих ферментов в чистых ядрах достоверно выше, чем в исходном гомогенате (табл. 1). Это дает основание считать, что глюкозо-6-фосфатаза и кислая фосфатаза, по-видимому, являются ядерными ферментами. Полученные нами данные хорошо согласуются с недавно опубликованными (17) о вероятной локализации глюкозо-6-фосфатазы в мембране ядер.

Таблица ¹ Активность тлюкозо-6-фосфатазы и кислой фосфатазы (на 100 % выхода вдер), *M*+ *m*

	Скелетные мышцы			Сердечная мышца	
	гомогенат	ядра	надосадочная жидкость	гомогенат	ядра
Глюкозо-6-фосфатаза	141 ± 24(5)	4,2±1,4(5)		212±14(4)	7,0+0,7(4)
	$1,1\pm0,3(6)$	2,0±0,6(6)	=	$1,5\pm0,2(5)$	$2,1\pm0,3(5)$
Кислая фосфатаза	167±36(6) 15,3±3,9(6)	$\frac{3,4\pm0,7(6)}{30,8\pm8,1(6)}$	$\frac{58,5 \pm 9,0(6)}{22,4 \pm 3,3(6)}$		- I

Примечание. Над чертой: для глюкозо-6-фосфатазы — μ г Р на 1 г влажиой ткани, для кислой фосфатазы — μ г μ г Р на 100 г свежей ткани; под чертой: μ г Р на 1 мг белка.

Высокая активность в ядрах сердечной и скелетных мыйц НАД пирофосфорилазы и АТФаз (¹³) подтверждает регуляторную роль ядра в процессах транспорта, обеспечивающих определенный уровень ядерноцитоплазматических отношений.

Институт биохимии Академии наук УССР Киев

Поступило 10 VIII 1970

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Рогозкин, Г. П. Федорова, В. Ф. Машанский, Вопр. мед. хим.. 10, 546 (1964). ² J. С. Еdelman, Р. М. Edelman et al., J. Cell. Biol., 27, 365 (1965). ³ С. Е. Северин, А. А. Цейтлин, В. И. Телепнева, ДАН, 160, 953 (1965). ⁴ К. L. Klein, J. Histochem. Cytochem. 14, 669 (1966). ⁵ К. L. Klein, C. R. Horton, A. Thureson-Klein, Europ. J. Biol., 6, 4, 514 (1968). ⁸ М. М. Заалишвили, Н. А. Гачечилидзе, Сообщ. АН ГрузССР, 41, 341 (1966). ¹ L. Chauveau, J. Moulé, A. C. Rouiller. Exp. Cell Res., 11, 317 (1956). ⁸ L. Chauveau, J. Moulé, A. C. Rouiller, Bull. Soc. Chim. Biol., 39, 4521 (1957). ⁸ С. С. Widnell, J. K. Тата, Biochem. J., 92, 313 (1964). ¹⁰ А. И. Силакова, С. Н. Полишук, Г. М. Бекир-Заде, Сборь. Структура и функции клеточного ядра, «Наука», 1967, стр. 131. ¹⁴ А. І. Силакова, С. М. Полішук, Укр. біохім. журн., 41, 371 (1969). ¹² С. М. Полішук, Укр. біохім. журн., 41, 611 (1969). ¹³ С. М. Полішук, А. І. Силакова, Укр. біохім. журн., 42, 345 (1970). ¹⁴ G. H. Нодероо м. W. С. Schneidler, М. J. Stribich, J. Biol. Chem., 196, 111 (1952). ¹⁵ G. Siebert, Biochem. Zs., 334, 369 (1961). ¹⁶ G. Siebert, G. B. Humphrey. Adv. Enzymol., 27, 239 (1965). ¹⁷ D. M. Kashing, C. B. Kasper, J. Biol. Chem., 244, 3786 (1969).