УДК 550.3

ГЕОФИЗИКА

О. Г. СОРОХТИН

ВОЗМОЖНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ОБРАЗОВАНИЯ ЯДРА ЗЕМЛИ

(Представлено академиком М. А. Садовским 4 VIII 1970)

Из пяти основных породообразующих элементов Земли О, Si, Mg, Fe и Al только железо относится к переходной группе элементов с незаполненным промежуточным электронным уровнем 3d и полностью заполненным внешним уровнем 4s. В связи с этим для правильного понимания физико-химических процессов, протекающих в центральных частях Земли, большую важность приобретает возможность электронно-фазовых переходов в железе при давлениях, господствующих в ядре Земли (1,4—3,9 Мбар (6)).

Предположение о большом значении электронно-фазовых переходов в железе для всей эволюции Земли впервые высказал В. А. Магницкий (1),

однако дальнейшего развития эта идея не получила. Последнее, по-видимому, связано с тем, что существование электронно-фазовых переходов в железе пока не удалось обнаружить экспериментально с помощью опытов по ударному сжатию образцов, хотя эти опыты сами по себе и не противоречат возможности существования таких переходов в железе (2, 3).

В настоящее время существование электронно-фазовых переходов экспериментально обнаружено у щелоч-

Таблица 1 Электрон-Конфигурация Тип кристаллической решетки (4) Эленеспаренных электронов в кригурация мент свободносталлическом при обычной темго атома поле пературе) 3d(2)4s(1) B-Sc $3d^{1}4s^{2}$ К. Г. Ц. 3d(3)4s(1) Ti $3d^24s^2$ г. п. у. 3d(4)4s(1) V 3d34s2 К. О. Ц. 3d(5)4s(1) Cr 345481 3d(5)4s(0) 3d5482 Mn 3d(4)48(0) 3d6482 Fe 34(3)48(0) 3d74s2 Co г. п. у. 34(2)48(0) 3d84s2 Ni к. г. ц.

 Устойчивый при обычной температуре ф-марганец обладает решеткой, близкой к к. о. ц., но с атомами, расположенными менее симметрично.

ных, щелочно-земельных, переходных и редкоземельных металлов Са; Sc, V, Sr, Y, Zr, Nd, Rb, Cs, La, Pr, Nd, Sm, Gd, Dy, Ho, Er, Lu (3). В большинстве случаев переходы связаны с перемещением s-электронов на d и f уровни, а в некоторых случаях и на p уровни. Во всех случаях экспериментально обнаруживаются только те переходы, при которых орбиталь s полностью освобождается от электронов (3).

Железо в нормальном состоянии характеризуется электронной конфигурацией $3d^84s^2$, поэтому теоретически у железа под влиянием давления может произойти две электронных перестройки: $3d^84s^2 \rightarrow 3d^74s^4 \rightarrow 3d^84s^6$. Каждая из таких перестроек неизбежно должна сопровождаться изменением химических свойств элемента. В частности, после первой электронной перестройки у железа могут появиться свойства одновалентного металла, связанные с возможностью образования в этом состоянии сильных $s\sigma$ -валентных связей. Высшие валентности железа при этом определятся тремя дополнительными (σ и π)-связями, проявление которых, однако, существенно зависит от конкретного кристаллического поля и свойств лигандов химического соединения.

 $ho_2=10,9-12,0$ г/см³ на его подошве. Наилучшие совпадения с массой и моментом инерции Земли (с точностью до 0,01%) получаются, если для внешнего ядра принять близкие к средним значения плотности $ho_1=9,8$ г/см³ и $ho_2=11,6$ г/см³, а для внутреннего ядра (без его внешнего слоя F) использовать значения плотности сплава $Fe_{0.9}Ni_{0.1}$. В этом случае плотность внутреннего ядра на его поверхности и в центре Земли оказывается равной соответственно $ho_3=13,0$ и $ho_4=13,4$ г/см³ * (плотность сплава Fe-Ni рассчитывалась по кривым сжатия железа и никеля, приведенным в (², ³)).

В связи с молекулярным строением решетки Fe₂O, можно сделать еще один интересный вывод: температура плавления этого вещества не должна быть высокой. Действительно, слабые дипольные и $d\pi$ -взаимодействия, существующие между отдельными молекулами Fe₂O, могут легко разрушаться тепловыми колебаниями молекул. Эта особенность Fe₂O очень хорошо соответствует факту жидкого состояния вещества внешнего ядра

Земли.

Приведенные соображения о химии железа 3d74s1 и свойствах его окислов, позволяют с определенной уверенностью высказать предположение, что внешнее ядро Земли состоит из одновалентной окиси железа Fe₂O. Внутреннее ядро при этом естественнее всего представить чисто железным или железо-никелевым (по аналогии с металлическими метеоритами). Не исключено, что во внутреннем ядре железо находится в состоянии $3d^34s^\circ$. Об этом, в частности, свидетельствует экстраноляция значений давлений вторых электронно-фазовых переходов элементов ряда K-V на элементы группы железа. Для элементов K ($P_{II \text{ теор}}=0.2 \text{ Mбар}$), Са $(P_{\text{II эмен}} = 0.39 \text{ Мбар})$, Sc $(P_{\text{II эмен}} = 0.91 \text{ Мбар})$ и $V (P_{II \text{ osc} u} =$ = 1,64 Мбар) давление s—d-перехода примерно линейно увеличивается с увеличением порядкового номера элемента, поэтому можно ожидать, что для железа $P_{\rm H} = 2.5 - 3$ Мбар. Полученная оценка давления второго перехода в железе очень неплохо совпадает с давлением на поверхности внутреннего ядра Земли $P_{n_0} = 3,17$ Мбар (6).

Выделяющиеся из ядра Земли при распаде железистых силикатов кремнезем и кислород в процессе эволюции Земли должны были существенно изменить минералогический состав пород мантии, а процессы зонной плавки (7), протекающие в астеносфере, привести к изменению распределения породообразующих минералов между верхней и нижней мантией. В частности, благодаря этим процессам нормативный кремнезем, находящийся при больших давлениях в плотнейшей фазе стиповерита, и окислы железа могут преимущественно концентрироваться в нижней мантии, а легкие фракции мантийного вещества — магнезиальные сили-

каты и алюмосиликаты — станут мигрировать в верхнюю мантию.

Расчет химического состава Земли по рассматриваемой модели (с учетом сделанных предположений) приведен в табл. 2. Обращает на себя внимание малое отношение SiO₂/MgO + FeO в первичном веществе Земли. Это показывает, что в первичном веществе основные пироксены (Mg, Fe)SiO₂, по-видимому, полностью отсутствовали и на 70% оно состояло из оливина (Mg_{0,87}, Fe_{0,63})₂SiO₄. В составе современной мантии (в сумме по верхней и нижней ее частям) нормативного оливина (Mg_{0,8}, Fe_{0,2})₂SiO₄ только 42,9%, а нормативного гиперстена (Mg_{0,8}, Fe_{0,2})SiO₃ 45,5%. Отсюда следует, что основные пироксены могли образоваться на планетной стадии развития вещества Земли. Плотность пироксенов, кристаллизующихся при больших давлениях в ильменитовой фазе, примерно на 15% выше плотности оливинов, находящихся в шпинелевой фазе (8). Поэтому можно предположить, что основная масса пироксенов (энстатита) сосредоточена в нижней мантии, а в верхней мантии преобладают оливины.

^{*} Для сравнения приведем соответствующие цифры по общепринятой модели «А» К. Е. Буллена: $\rho_1=9.7;~\rho_2=11.9;~\rho_3=12.0;~\rho_4=12.3~r/cm^3~(^6)$.

^{6 3}ag. 2178, T. 198, No 6

жимические соединения ж элементы	Современный состав			Состав первичного веществ	
	вигоподо	внешнее ядро	внутреннее ядро	в целом	каменной Франции
SiO ₂	47.04	_	_	32,27	37,76
TiO2	0.30	_	_	0,20	0,23
Al ₂ O ₃	3,90		_	2,71	3,17
Cr ₂ O _a	0,30			0,20	0,23
FeO	13,09	_	-	25,31	29,64
NiO	0,30	_		0,20	0,23
MnO	0,20	_	-	0,15	0,17
MgO	31,37	_		21,38	25,03
CaO	2,60	_	-	1,80	2,10
Na ₂ O	0,60	_	-	0,42	0,49
K ₂ O	0,20	_	-	0,15	0,17
Fe ₂ O	-	100,0	1777	_	_
P_2O_5	0,10	_	_	0,07	0,08
Fe *	TE 11.	_	73,0	14,36	_
Ni	U -	-	8,0	0,18	
FeS **	TOX T	-	19,0	0,60	0,70
Ср. ат. вес	22,7	42,5	53,9	29,7	25,2

Суммарное железо: 34,44% = 14,36 (свободное) + 20,08% (связанное).

В веществе метеоритов, особенно в металлических фракциях, обычно бывает растворено и небольшое количество водорода (°). Водород — наиболее легко поддающийся окислению элемент. Поэтому выделяющийся из ядра кислород еще на ранних стадиях развития Земли (а в это время процессы дифференциации вещества происходили особенно бурно) прежде всего должен был прореагировать именно с водородом. Этим, по-видимому, можно объяснить образование океанов уже в доархейское время.

В последующие геологические эпохи основной объем выделяющегося из ядра Земли кислорода уходил на окисление оставшихся в мантии свободного железа, углерода и некоторых других элементов. Лишь после того, как основная масса этих элементов оказалась окисленной, свободный кислород через рифтовые зоны смог поступать в атмосферу. По-видимому, это важное для жизни на Земле событие произошло в конце протерозоя. В дальнейшем, с каждым новым орогеническим циклом, поступление кислорода в атмосферу увеличивалось.

По рассмотренной модели, за время существования Земли должно было выделиться $4.8 \cdot 10^{-37}$ эрг энергии, из них $2.3 \cdot 10^{37}$ эрг за счет гравитационной дифференциации вещества и $2.5 \cdot 10^{37}$ эрг за счет окисления свободных элементов.

Институт океанологии им. П. П. Ширшова Академии наук СССР Москва

Поступило 6 VII 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Магницкий, Основы физики Земли, М., 1953. ² Л. В. Альтшулер, УФН, 85 (2), 197 (1965). ³ Л. В. Альтшулер, А. А. Баканова, УФН, 96 (2), 193 (1968). ⁴ Г. Реми, Курс неорганической химии, 2, М., 1969. ⁵ Ф. Коттон, Дж. Уилкинсон. Современная неорганическая химия, 2, М., 1969. ⁶ К. Е. Буллен, Введение в теоретическую сейсмологию, М., 1966. ⁷ А. П. Виноградов, Введение в геохимию океана, М., 1967. ⁸ А. Э. Рингвуд, А. Мейджор, Превращения в пироксенах при высоком давлении. В сборн. Петрология верхией мантии, М., 1968. ⁹ Е. Л. Кринов, Метеориты, М.-Л., 1948.

^{**} Предполагается, что основная масса FeS сосредоточена в слое F внутреннего ядра.