УДК 513.83+519.54

MATEMATUKA

В. В. ФЕДОРЧУК

ПРИМЕР ОДНОРОДНОГО БИКОМПАКТА С НЕСОВПАДАЮЩИМИ РАЗМЕРНОСТЯМИ

(Представлено академиком П. С. Александровым 17 XII 1970)

В настоящее время известен целый ряд примеров бикомпактов с 1-й аксиомой счетности с несовпадающими размерностями dim и ind (см ($^{t-4}$)). Ниже будет построен такой однородный сепарабельный бикомпакт X с 1-й аксиомой счетности, что dim X=1, а ind X=1 по X=2. Будет показано, что бикомпакт X не является фактор-пространством никакой топологической группы. С другой стороны, Б. А. Пасынков (5 , 6) доказал, что для бикомпакта, являющегося фактор-пространством локально бикомпактной топологической группы (и даже в более общем случае), размерностя dim, ind и Ind совпадают. Поэтому интересным представляется вопрос о совпадении размерности для бикомпакта, являющегося фактор-пространством топологической группы. Открытым остается также вопрос о совпа-

дении индуктивных размерностей для однородных бикомпактов.

1. Построение бикомпакта X. Пусть S и T — экземиляры окружности. Точки окружностей S и T — это углы (действительные числа с отождествлением по модулю 2π). Через $|\phi_2 - \phi_1|$ обозначим наименьший по абсолютной величине угол, на который надо повернуть окружность S, чтобы перевести точку ϕ_1 в точку ϕ_2 . Для каждого $\phi_0 \in S$ поотображение for: $S \setminus \{\varphi_0\} \to T$. строим непрерывное $f_{\varphi_0}(\phi)=2\pi\log_2rac{|\phi-\varphi_0|}{2\pi}\mathrm{mod}\ 2\pi.\ \mathrm{B}$ качестве множества, на котором будет построен бикомпакт X, возьмем $S \times T$. Обозначим через p проекцию $S \times T$ на S. Пусть U — открытое подмножество T, $\phi_0 \subseteq S$ и V — окрестность ϕ_0 . Положим $O(U, \phi_0, V) = \{\phi_0\} \times U \cup p^{-1}(V \cap f_{\phi_0}^{-1}U)$. Легко проверить, что всевозможные множества $O(U, \varphi, V)$, где семейства $\{U\}$ и $\{V\}$ являются базами открытых множеств пространств Т и S, образуют базу некоторой хаусдорфовой топологии на X. Эта топология индуцирует на слоях $\{\varphi\} \times T = p^{-1}(\varphi)$ обычную топологию окружности. Отображение $p: X \to S$, очевидно, непрерывно и бикомпактно. Легко проверить, что отображение р замкнуто и даже сильно замкнуто в смысле работы (3). Следовательно, Х — бикомпакт, как совершенный прообраз бикомпакта, Поскольку отображение $p: X \to S$ неприводимо и S сепарабельно, пространство X также сепарабельно. Бикомпакт X удовлетворяет 1-й аксиоме счетности. Счетную базу в точке (φ, ψ) образуют множества $O(U_m, \varphi, V_n)$, где $\{U_m\}$ $(\{V_n\})$ счетная база в точке ф (ф).

2. $\dim X = 1$, $\operatorname{ind} X = \operatorname{Ind} X = 2$. Неравенство $\dim X \geqslant 1$ следует из того, что бикомпакт X содержит окружность в качестве замкнутого подмножества. Неравенство $\dim X \leqslant 1$ вытекает из того, что для сильно замкнутого отображения $p: X \to S$ имеем $\dim X \leqslant \max \{\dim p, \dim S\}$ (см. (7)).

Так как у каждой точки $(\phi, \psi) \in X$ существует база окрестностей $\{O(U_m, \phi, V_n)\}$, границы которых являются одномерными компактами

 $(U_m, V_n -$ интервалы), Ind $X \leq 2$.

Осталось проверить неравенство ind $X \geqslant 2$. Для этого докажем, что X нельзя разбить никаким нульмерным множеством. Предположим, что такое разбиение возможно. Тогда существуют такие капонически открытые непересекающиеся множества $G, H \subset X$, что $X = [G \cup H]$ и множество

 $F = X \setminus G \cup H$ является их общей нульмерной границей. В силу того, что отображение p неприводимо, открытое множество $p^+(G \cup H)$ всюду плотно в S. Так как $G \cap H = \phi$ и для каждой точки $\phi \subseteq S$ множество $p^{-1}(\phi)$ связ-

HO, TO $p^{\oplus}(G \cup H) = p^{\oplus}G \cup p^{\oplus}H$.

Множество $C=pF=S\setminus p^+(G\cup H)$ нигде не плотно. Более того, в любой окрестности точки $\varphi\in C$ содержатся как максимальные интервалы множества p^+G , так и максимальные интервалы множества p^+H . Это означает, что, если обозначить через C_G (C_H) множество концов максимальных интервалов p^+G (p^+H), множества C_G и C_H являются плотными подмножествами в C. Кроме того, эти множества обладают свойством

(*) $G \cap p^{-1}(\varphi) (H \cap p^{-1}(\varphi))$ всюду плотно в $p^{-1}(\varphi)$ для $\varphi \in C_{\sigma}(C_H)$.

Обозначим через g_{ϕ} поворот окружности на угол ϕ ($g_{\phi}(\phi') = \phi' + \phi$). Пусть V — открытое множество на окружности V, содержащее 0, и U — открытое множество в T.

Лемма 1. Пусть K — канонически открытое подмножество биком-

пакта Х.

Тогда множество $C_K^{U,V} = \{ \phi \in C \mid O(U, \phi, g_{\phi}V) \subset K \}$ замкнуто в S. Доказательство. Поворот g_{ϕ_0} порождает гомеоморфизм \tilde{g}_{ϕ_0} биком-

Доказательство. Поворот g_{φ_0} порождает гомеоморфизм \tilde{g}_{φ_0} бикомпакта X на себя $(\tilde{g}_{\varphi_0}(\varphi, \psi) = (\varphi_0 + \varphi, \psi))$. Множество таких гомеоморфизмов образует группу, которая относительно топологии равномерной сходимости гомеоморфна окружности $(\tilde{g}_{\varphi_0} \leftrightarrow \varphi_0)$. С другой стороны $O(U, \varphi, g_{\varphi}V) = \tilde{g}_{\varphi}O(U, 0, V)$, так как $f_{\varphi_0}(\varphi) = f_{\varphi_0+\varphi_0}(\varphi + \varphi_1)$. Следовательпо, $\{\varphi \in S \mid O(U, \varphi, g_{\varphi}V) \subset K\} = \{\varphi \in S \mid \tilde{g}_{\varphi}O(U, 0, V) \subset K\}$. Поэтому для доказательства леммы 1 достаточно показать, что множество гомеоморфизмов \tilde{g}_{φ} , для которых $\tilde{g}_{\varphi}O(U, 0, V) \subset K$, замкнуто. Это вытекает из следующего утверждения.

Лемма 2. Пусть Г — группа преобразований равномерного простран-

ства Х и К - канонически открытое подмножество пространства Х.

Тогда для любого открытого множества $W \subset X$ множество $\Gamma_w{}^{\kappa} = \{g \in \Gamma \mid gW \subset K\}$ замкнуто в Γ относительно топологии равномерной сходимости.

Доказательство. Поскольку Γ — группа, без ограничения общности можно считать, что $W \subset K$. Пусть $g_0 \in [\Gamma_w^{\ K}]$ и $x \in g_0 W$. Положим $y = g_0^{-1}(x)$ и покажем, что $x \in [\{g(y) | g \in \Gamma_w^{\ K}\}]$. Пусть U — произвольная окрестность точки x и пусть $\{U,V\}$ — такое равномерное покрытие пространства X, что $x \notin V$. Существует равномерное покрытие $\alpha = \{A\}$ пространства X, звездно вписанное в покрытие $\{U,V\}$. По определению топологии, в Γ существует такой гомеоморфизм $g \in \Gamma_w^{\ K}$, что $\{g_0(z),g(z)\} \in U$ $\{A \times A | A \in \alpha\}$ для всех $z \in X$. Значит, существует такой элемент A покрытия α , что $\{x,g(y)\} \in A \times A$. Следовательно $\{y\} \in St_\alpha\{x\} \subset U$, $\{x\} \in X$. $\{x\} \in Y$, $\{x$

Лемма 2, а вместе с ней и лемма 1 доказаны.

Если $\{U_m\}$ — счетная база открытых множеств на окружности T, а $\{V_n\}$ — база окрестностей нуля на окружности S, то счетное семейство $\{O(U_m,0,V_n)\,|\,m,\,n=1,2,\ldots\}$ открытых множеств обладает тем свойством, что база бикомпакта X получается на этого семейства при помощи всех сдвигов \tilde{g}_{σ} . Отсюда следует, что $\bigcup_{m,n} (C_G^{U_m,V_n} \cup C_H^{U_m,V_n}) = C$. По лемме 1 мно-

жества $C_G^{U_m,V_n}$ и $C_H^{U_m,V_n}$ замкнуты, а их объединение — компакт. Следовательно, по крайней мере, одно из этих множеств, например, $C_G^{U_m,V_n}$ имеет непустую внутренность в C, т. е. содержит некоторый интервал множества C. Так как C_H плотно в C, имеем $C_H \cap C_G^{U_m,V_n} \neq \phi$. Это противоречит свойству (*). Таким образом, пространство X нельзя разбить никаким нульмерным множеством, т. е. ind $X \geqslant 2$.

3. Бикомпакт X однороден. Надо показать, что для любой пары точек $x_1 = (\phi_1, \psi_1)$ н $x_2 = (\phi_2, \psi_2)$ нз X существует такой гомеоморфизм $h: X \to X$, что $h(x_1) = x_2$. Гомеоморфизм $g_{\varphi_1 \to \varphi_1}$ переводит точку (φ_1, ψ_1) в точку (φ_2, ψ_1) . Осталось научиться переводить точку (φ, ψ_1) в точку (φ, ψ2).

Лемма 3. Пусть $\alpha: S \to S -$ такой диффеоморфизм, что $\alpha'(\varphi) > 0$

 $\partial AA \quad \text{ocex} \quad \phi \subseteq S.$

Tогда отображение $h: X \to X$, задаваемое формулой

$$h(\varphi, \psi) = (\alpha(\varphi), \psi + 2\pi \log_2 \alpha'(\varphi)),$$

является гомеоморфизмом бикомпакта Х на себя.

Доказательство. Ясно, что h — взаимно однозначное отображение на Х. Для того чтобы отображение h было гомеоморфизмом, достаточно доказать, что отображение h открыто. Надо показать, что образ hG базисной окрестности G точки (φ_0, ψ_0) содержит некоторую базисную окрестность точки $h(\varphi_0, \psi_0)$. Пусть $G = O(U, \varphi_0, V)$, где $U = \{\psi \in T \mid |\psi - \psi_0| < 2\pi/m\}$, а $V = \{\varphi \in S \mid |\varphi - \varphi_0| < 2\pi/2^n$. Тогда $hG = \{\alpha(\varphi_0)\} \times g_{2\pi \log_2 \alpha'(\varphi_0)}(U) \cup p^{-1}\{\alpha V \cap \alpha f_{\varphi_0}^{-1}(U)\}$. Положим $U_1 = \{\psi \in T \mid |\psi - \psi_0 - 2\pi \log_2 \alpha'(\varphi_0)| < 2\pi/(2m)\}$. Тогда $\psi_0 + 2\pi \log_2 \alpha'(\varphi_0) \in U_1 \subset M$ $\subset g_{2\pi \log_2 \alpha'(\varphi_0)}(U)$.

Осталось показать, что существует такая окрестность V_i точки $\alpha(\varphi_0)$, для которой $V_i \cap f^{-1}_{\alpha(\varphi_0)}(U_i) \subset \alpha V \cap \alpha f_{\varphi_0}^{-1}(U)$.

Множество U- это интервал $\psi_0-2\pi/m<\psi<\psi_0+2\pi/m$. Тогда $f_{\varphi_0}^{-1}(U)$ — это счетная сумма интервалов; $f_{\varphi_0}^{-1}(U) = \left(igcup_{U^-}^\infty L_l\right) \cup \left(igcup_{U^-}^\infty K_l\right)$. $\{L_i\}$ — интервалы слева от ϕ_0 (если $\phi \in L_i$, то $-\pi < \phi - \phi_0 < 0$), $\{K_i\}$ — интервалы справа от ϕ_0 . Пусть $L_i = (c_i^-, c_i^+)$, $K_i = (d_i^-, d_i^+)$. Пусть $f_{\varphi_0}(\varphi) = \psi$. Это значит, что

$$2\pi \log_2 |\varphi - \varphi_0|/(2\pi) = \psi - 2\pi l, \quad l = 1, 2, ...$$

Тогда $| \phi - \phi_0 | = 2\pi \cdot 2^{\psi_0/(2\pi)-l}$, т. е. $\phi = \phi_0 \pm 2\pi \cdot 2^{\psi/(2\pi)-l}$. Следовательно, положив $\psi_0 / (2\pi) - l = a$, имеем

$$\begin{split} c_l^- &= \phi_0 - 2\pi \cdot 2^{a+1/m}, \quad c_l^+ = \phi_0 - 2\pi \cdot 2^{a-1/m}, \\ d_l^- &= \phi_0 + 2\pi \cdot 2^{a-1/m}, \quad d_l^+ = \phi_0 + 2\pi \cdot 2^{a+1/m}. \end{split}$$

Тогда

$$\begin{split} \alpha f_{\varphi_{b}}^{-1}(U) &= \left(\bigcup\limits_{l=1}^{\infty} \alpha\left(L_{l}\right) \right) \cup \left(\bigcup\limits_{l=1}^{\infty} \alpha\left(K_{l}\right) \right), \\ \alpha\left(L_{l}\right) &= \left(\alpha\left(c_{l}^{-}\right), \alpha\left(c_{l}^{+}\right)\right), \quad \alpha\left(K_{l}\right) = \left(\alpha\left(d_{l}^{-}\right), \alpha\left(d_{l}^{+}\right)\right). \end{split}$$

Для множества $f_{\alpha(\phi_0)}^{-1}(U_1)$ имеем

$$U_1 = (\psi_0 + 2\pi \log_2 \alpha'(\varphi_0) - 2\pi / (2m), \psi_0 + 2\pi \log_2 \alpha'(\varphi_0) + 2\pi / (2m)),$$

$$f_{\alpha(\varphi_0)}^{-1}(\boldsymbol{U}_1) = \begin{pmatrix} \overset{\infty}{\bigcup} \hat{L}_l \end{pmatrix} \cup \begin{pmatrix} \overset{\infty}{\bigcup} \hat{K}_l \end{pmatrix}, \quad \hat{L}_l = (\hat{\boldsymbol{c}}_l^-, \hat{\boldsymbol{c}}_l^+), \quad \hat{K}_l = (\hat{\boldsymbol{d}}_l^-, \hat{\boldsymbol{d}}_l^+),$$

где

$$\hat{c}_{l}^{-} = \alpha (\varphi_{0}) - 2\pi \cdot 2^{b+1/(2m)}, \quad \hat{c}_{l}^{+} = \alpha (\varphi_{0}) - 2\pi \cdot 2^{b-1/(2m)},$$

$$\hat{d}_{l}^{-} = \alpha (\varphi_{0}) + 2\pi \cdot 2^{b-1/(2m)}, \quad \hat{d}_{l}^{+} = \alpha (\varphi_{0}) + 2\pi \cdot 2^{b+1/(2m)},$$

причем $b = a + \log_2 \alpha'(\varphi_0)$.

Покажем, что, начиная с некоторого l_0 , все $\hat{L}_i \subset \alpha(L_i)$ и $\hat{K}_i \subset \alpha(K_i)$. Надо показать, что $\alpha(c_i^-) < \hat{c}_i^-, \hat{c}_i^+ < \alpha(c_i^+)$ п $\alpha(d_i^-) < \hat{d}_i^-, \hat{d}_i^+ < \alpha(d_i^+)$. По любому $\varepsilon > 0$ существует такое $\delta > 0$, что $\left[\alpha(\phi) - \alpha(\phi_0)\right] / (\phi - \phi_0) > \alpha'(\phi_0) - \varepsilon$ при $-\delta < \phi - \phi_0 < 0$, т. е. $\alpha(\phi) < \alpha(\phi_0) + \left[\alpha'(\phi_0) - \varepsilon\right] \left[\phi - \phi_0\right]$. Положим $\phi = \phi_0 - 2\pi \cdot 2^{a+1/m}$. Тогда $\phi - \phi_0 = -2\pi \cdot 2^{a+1/m}$.

Следовательно, при $2\pi \cdot 2^{a+1/m} < \delta$ имеем

$$\begin{array}{l} \alpha(c_i^-) = \alpha(\phi_0 - 2\pi \cdot 2^{a+1/m}) < \alpha(\phi_0) + [\alpha'(\phi_0) - \epsilon](-2\pi \cdot 2^{a+1/m}) = \\ = \alpha(\phi_0) - 2\pi\alpha'(\phi_0) \cdot 2^{a+1/m} + \epsilon \cdot 2\pi \cdot 2^{a+1/m}. \end{array}$$

Тогда
$$\hat{c}_{l}^{-} - \alpha(c_{l}^{-}) > \alpha(\varphi_{0}) - 2\pi\alpha'(\varphi_{0}) \cdot 2^{a+1/(2m)} - \alpha(\varphi_{0}) + 2\pi\alpha'(\varphi_{0}) \cdot 2^{a+1/m}$$

 $- \varepsilon \cdot 2\pi \cdot 2^{a+1/m} = 2\pi \cdot 2^{a+1/(2m)} [-\alpha'(\varphi_{0}) + \alpha'(\varphi_{0}) \cdot 2^{1/(2m)} - \varepsilon \cdot 2^{1/(2m)}].$

Взяв
$$\epsilon = \frac{\alpha'(\phi_0)(2^{1/(2m)}-1)}{2^{1/(2m)}}$$
, имеем $\hat{c}_i^- - \alpha(c_i^-) > 0$ при

 $2\pi \cdot 2^{a+1/m} < \delta$, т. е. для всех l, начиная с некоторого.

Аналогично проверяются три оставшиеся неравенства

$$\hat{c_i}^+ < \alpha(c_i^+), \quad \alpha(d_i^-) < \hat{d_i}^- \text{ if } \hat{d_i}^+ < \alpha(d_i^+).$$

Таким образом, $\hat{L}_l \subset \alpha(L_l)$ и $\hat{K}_1(\alpha(K_l))$ для всех l, начиная с некоторого. Следовательно, существует такая окрестность V_1 точки $\alpha(\varphi_0)$, что

$$V_1 \cap f_{\alpha(\varphi_a)}^{-1}(U_1) \subset \alpha V \cap \alpha f_{\varphi_a}^{-1}(U)$$
.

Это завершает доказательство леммы.

Теперь для того, чтобы можно было перевести точку (φ_0 , ψ_1) в точку (φ_0 , ψ_2) посредством некоторого гомеоморфизма всего пространства, достаточно, в силу леммы 3, существования диффеоморфизма $\alpha: S \to S$ ($\alpha' > 0$) с заданными свойствами $\alpha(\varphi_0) = \varphi_0$ и $\alpha'(\varphi_0) = 2^{(\varphi_2 - \psi_1)/(2\pi)}$. Но этот факт очевиден. Таким образом, бикомпакт X однороден.

Замечание. Бикомпакт X сильно однороден в том смысле, что для любых двух точек $x_1, x_2 \in X$ существует такой гомеоморфизм $h: X \to X$, для которого $h(x_1) = x_2$ и $h(x_2) = x_1$. Однако размеры этой заметки не позволяют привести довольно громоздкие доказательства этого факта.

 Бикомпакт X не является фактор-пространством топологической группы.

Несложно проверить следующее утверждение.

 Π е м м а 4. Пусть $f: Y \rightarrow Z$ — неприводимое отображение однородного бикомпакта Y на бикомпакт Z. Предположим, что прообраз какой-нибудь точки не вырожден и линейно связан.

Тогда, если бикомпакт Y является фактор-пространством топологической группы, то существуют такие две точки $y_1, y_2 \subseteq Y$, связанные про-

стой дугой, что $f(y_1) \neq f(y_2)$.

Легко проверить, что бикомпакт X удовлетворяет всем условиям леммы 4, кроме последнего (точки, принадлежащие различным слоям $p^{-1}(\varphi)$, не могут быть связаны дугами). Следовательно, X не является фактор-пространством топологической группы.

Механико-математический факультет Московского государственного университета им. М. В. Ломоносова Поступило 2 XII 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. В. Федорчук, ДАН, 182, № 2, 275 (1968). ² В. В. Филиппов, ДАН, 186, № 5, 1020 (1969). ³ В. В. Филиппов, ДАН, 192, № 3, 516 (1970). ⁴ Б. А. Пасынков, ДАН, 192, № 3, 503 (1970). ⁵ Б. А. Пасынков, УМН, 17, № 5, 129 (1962). ⁶ Б. А. Пасынков, ДАН, 161, № 2, 281 (1965). ⁷ В. В. Федорчук, ДАН, 185, № 1, 54 (1969).