ГИДРОЛОГИЯ

Д. Г. ФЛЕИШМАН, Ю. П. КАНЕВСКИЙ

КОСМОГЕННЫЙ Na²² В ПОВЕРХНОСТНЫХ ВОДАХ СУШИ

(Представлено академиком Е. М. Крепсом 8 VI 1970)

Среди космогенных радионуклидов, образующихся в земной атмосфере, по-видимому, лишь H^3 ($T_4 = 12,3$ лет) и Na^{22} ($T_5 = 2,6$ лет) как по продолжительности жизни, так и по химическим свойствам являются наиболее пригодными естественными метками для исследования гидрологических процессов в природных условиях. Пригодность трития для этой цели не вызывает сомнений, так как он метит непосредственно молекулы воды. В го же время известно, что из всех катионов, присутствующих в природных водах, ионы натрия наиболее устойчивы в растворе (1, 2), поэтому можно ожидать, что роль сорбционных и ионнообменных процессов в удалении Na²² из раствора незначительна и радиоактивный распад этого радионуклида должен быть практически единственной причиной, уменьшающей его концентрацию в поверхностных водах.

Оценим концентрации Na²² (ат/л) в атмосферных осадках n_{oc}, речных $n_{\rm p}$ и озерных $n_{\rm os}$ водах, считая известными скорость его образования N(ат/км²·сек) и столбе воздуха над единицей площади земной поверхности и среднее время пребывания в атмосфере та, а также гидрологические

параметры исследуемых водоемов.

Атмосферные осадки. Средняя за длительный период времени концентрация Na²² в атмосферных осадках определяется формулой

$$n_{oc} = Ne^{-\lambda \tau_a}/P$$
, (1)

где P — средняя интенсивность атмосферных осадков ($\pi/\kappa m^2 \cdot cek$), λ —

константа распада Na²².

Безозерные реки. Выпавшие на поверхность Земли осадки частично испаряются, что приводит к повышению концентрации Na²² в поверхностных водах по сравнению с атмосферной влагой. Чтобы учесть влияние испарения, необходимо заменить в формуле (1) среднюю интенсивность атмосферных выпадений P на модуль стока M (л/км 2 сек) с данной территории. Кроме того, следует ввести поправку на время задержки воды в бассейне реки т (считая с момента выпадения из атмосферы).

Таким образом, для безозерных рек

$$n_p = Ne^{-\lambda(\tau_a + \tau_b)} / M. \tag{2}$$

Озера и озерные (вытекающие из озер) реки. Влияние распада Na²² на концентрацию этого радионуклида в поверхностных водах наиболее заметно для озер и озерных рек, особенно в тех случаях, когда объем воды озера V существенно превышает ее годовой расход Q, т. е. «время смены воды» $T_{os} = V/Q$ достаточно велико по сравнению с периодом полураснада $\mathrm{Na^{22}}$. Чтобы учесть «старение» воды в озере, введем коэффициент $K = f(T_{oo})$ в формулу (2). Тогда

$$n_{os} = KNe^{-\lambda(\tau_a + \tau_b)} / M. \qquad (3)$$

Для расчета «коэффициента старения» К будем предполагать, что время полного перемешивания воды в озере мало по сравнению с периодом

полураспада Na²², т. е. происходит непрерывное перемешивание вновь поступающего и всего находящегося в озере Na²². В этом случае

$$K = \frac{1}{T_{03}} \int_{0}^{T_{03}} e^{-\lambda t} dt = (1 - e^{-\lambda T_{03}}) / \lambda T_{03}; \tag{4}$$

и

$$n_{os} = N(1 - e^{\lambda T_{os}}) e^{-\lambda(\tau_a + \tau_c)} / M \lambda T_{os}.$$
 (5)

Формула (5) является общим выражением как для озерных, так и для безозерных (если $T_{os}=0$, K=1) рек. Однако следует помнить, что она справедлива лишь для простой модели: безозерный бассейн — озеро — река. В случае сложных озерно-речных систем целесообразно расчленять сложную систему на более простые, а концентрацию Na^{22} на выходе сложной системы рассчитывать с учетом относительных вкладов каждой из простых систем.

Удобный объект для экспериментальной проверки полученных соотномений — система великих озер Европы (бассейн р. Невы), гидрологические характеристики которой хорошо изучены ($^{3-6}$). Входящие в систему озера Онежское ($V=295~{\rm km}^3$), Сайма ($V=75~{\rm km}^3$) и Ильмень ($V\approx3~{\rm km}^3$) соединены с Ладожским озером ($V=908~{\rm km}^3$) реками Свирью, Вуоксой и Волховым, среднегодовой расход которых составляет соответственно 19,3; 18,7 и 18,2 км³. На долю этих трех главных притоков Ладожского озера приходится 70% всей поступающей в него воды. Вклад атмосферных осадков в водный баланс Ладожского озера составляет 13%, а оставшаяся часть обеспечивается малыми реками (15%) и подземным притоком (2%). Средний годовой расход Ладожского озера равен $79,8~{\rm km}^3$, из них 92,4% выносит р. Нева, а 7,6% тратится на испарение. Остальные гидрологические параметры, необходимые для теоретической оценки концентрации ${\rm Na}^{22}$ в реках бассейна, приведены в табл. 1.

При расчетах использованы следующие значения N, τ_a и τ_b . Для географической широты 60° $N=15,8\cdot 10^{-5}$ ат/см $^2\cdot$ сек (7), а $\tau_a=13$ мес. (8). Параметр τ_b — среднее время задержки воды в бассейне реки (озера), — несомненно, зависит от особенностей бассейна, в частности его заболоченности, вклада снегового и подземного питания и т. п. Анализ гидрологического режима некоторых рек Европейской территории СССР показал, что

Габлипа 1

Река, осадки Свирь	Озе- ро — исток реки	Средние многолетние гидрологические параметр		Расчетные средние многолетние величины		Результаты измерений ^а		Пункт отбора	Пата отбора	
		M, л/нм ² -сен, (4,10)	T _{O3} , лет (4,6,9)	K	Na ⁷² , 10 ⁴ ат/л	Na ²² , 10 [*] ат/л	Na, mr/n	пробы	пробы	
		9,9	15,0	0,246	2,5	2,4±0,2	1,9	Лодейное	21 X	1969 r
Вуок- са — Бур- ная	Сайма	9,6	4,0	0,615	6,4	3,7±0,3	3,9	поле п. Запорож- ское	16 VII	1969 г.
Вол-	Иль-	7,4	0,2	0,970	13,2	6,9±0,8	10,0	Новая Ладо-	2 VI	1969 г.
Дождь Нева	Ла- дож-	21,0 ⁵ 9,4	11,3	0,316	5,6 2,8 ^B ; 2,1 ^F	7,8±1,0 5,2±0,6 5,4±0,5 2,3±0,2	17,2 4,4 0,2 4,5	га То же * * Ленинград Ленинград (водопровод)	29 IV	1970 r. 1970 r. 1969 r. 1969 r.
(6)	Ское					2,3±0,2 2,4±0,2 2,3±0,3 2,0±0,3	4,5 4,6 4,5 4,6	То же * * р. Большая невка	3 IX	1969 r. 1969 r. 1970 r. 1970 r.

² Для Na²³ указана срединя квадратичная ошибка. ⁶ Средняя многолетняя интенсивность атмосфервых осадков для Ленинграда (¹¹). ^В Расчет по формуле (6) для теоретических значений n₁, n₂ и n₃.
[‡] Расчет по формуле (6) для экспериментальных значений n₁, n₂ и n₃.

наибольшая корреляция годового стока с годовыми осадками наблюдается при «сдвижке» осадков на 4—6 мес. (°), поэтому, не имея конкретных данных о времени задержки воды в бассейнах исследуемых рек, мы приняли

для расчетов $\tau_6 = 6$ мес.

Концентрации Na^{22} в воде Свири (n_1) , Вуоксы (n_2) и Волхова (n_3) рассчитывали непосредственно по формуле (5), а в воде Невы (n_H) — с учетом относительных вкладов каждого из этих притоков, атмосферных осадков и суммарного вклада малых рек и подземного питания в водный баланс Ладожского озера, а также испарения с его поверхности по следующей формуле:

$$n_{\rm H} = \left[\frac{0.24n_1 + 0.23n_2 + 0.23n_3}{0.924} + 0.13 \frac{Ne^{-\lambda \tau_a}}{M_{\rm H}} + 0.17 \frac{Ne^{-\lambda(\tau_a + \tau_6)}}{M_{\rm H}} \right] K_{\rm H}, \quad (6)$$

где K_{π} — «коэффициент старения» воды в Ладожском озере, $M_{\rm H}$ — модуль стока р. Невы. При этом расчет концентраций ${\rm Na^{22}}$ в воде Невы проводили для двух вариантов значений n_1 , n_2 и n_3 : 1) теоретических, вычисленных по формуле (5), и (2) непосредственно измеренных в течение 1969—1970 гг.

Результаты расчетов и измеренные концентрации в воде притоков Ладожского озера и в р. Неве приведены в табл. 1. Для измерения концентраций Na²² применяли следующую методику. Пробы воды объемом 200—600 л пропускали через ионнообменные колонки со смолой КУ-1 (сухой вес смолы 500 г). Поглощенные катионы элюировали 1N HCl. Элюат выпаривали и прокаливали при температуре не выше 500°. В полученном сухом остатке и в воде методом пламенной фотометрии измеряли содержание стабильного натрия и рассчитывали, какому объему исследуемой воды эквивалентен сухой остаток. Определение Na²² в сухом остатке проводили на двухкристальном сцинтилляционном γ-спектрометре совпадений по аннигиляционным γ-квантам, сопровождающим позитронный распад этого радпонуклида. Размеры кристаллов NaJ (T1) 70 × 70 мм. Эффективность регистрации распадов Na²² по нику полного поглощения аннигиляционных γ-квантов (E = 0,51 Мэв) равна 3,5 % для навесок 12 г и 2,2 % для навесок 45 г при фоне около 4 имп/час. В зависимости от активности измеряемых проб полное время набора импульсов составляло 1000—4000 мин.

Как видно из табл. 1, измеренные концентрации Na²² в водах Свири и Невы близки к расчетным величинам, однако для Вуоксы и Волхова они примерно в два раза меньше теоретических значений. При анализе причин наблюдаемых различий следует прежде всего учесть, что теоретические концентрации рассчитаны по средним многолетним параметрам, а результаты измерений пока немногочисленны и относятся к короткому периоду времени. Очевидно, что наиболее близкими к средним многолетним данным должны быть концентрации Na²² в озерах с медленным водообменом, т. е. в Онежском и Ладожском, а также в вытекающих из пих реках.

Существенной причиной отличий теоретических значений от экспериментальных является известный произвол в выборе величины т₆ без учета конкретных особенностей бассейна. Это хорошо видно на примере бассейна р. Вуоксы. Оз. Сайма фактически состоит из целой системы озер, в которую изливаются воды двух других сложных озерных систем — Саволакской и Карельской. Поэтому для более точной оценки концентраций Na²² в оз. Сайма и р. Вуоксе необходимо учитывать «старение» воды в каскаде озер, предшествующих оз. Сайма. Если для бассейна оз. Сайма выбрать т₆ = 2,7 лет, то расчетная концентрация совпадает с измеренной. По-видимому, и для сильно заболоченного бассейна оз. Ильмень величина т₆ может быть значительно большей, чем принятая в данной работе. Следует учесть также, что в связи со слабым регулирующим влиянием оз. Ильмень происходят существенные сезонные колебания гидрологического режима р. Волхов, приводящие к сезонному ходу содержания Na²² в речной воде и не позволяющие по полученному небольшому ряду наблюдений оп-

ределить с достаточной точностью среднегодовую концентрацию этого радионуклида. Интересно отметить, что в период паводка (4 V 1970 г.), когда основное питание Волхова осуществляется талыми водами, а влияние испарения невелико, измеренная концентрация Na²² в речной воде близка к средней многолетней расчетной величине для атмосферных осадков.

Как известно, в результате ядерных взрывов 1961—1962 гг. в атмосферу было введено значительное количество Na²² искусственного происхождения (¹²). Это привело к существенному увеличению содержания Na²² в атмосферных осадках в последующие годы, но уже в 1966 г. вклад искусственного Na²² уменьшился до уровня, пренебрежимого по сравнению с естественным (⁸). Возможно, что в озерах с медленным водообменом, в частности в Онежском и Ладожском, еще сохранилось некоторое количество искусственного Na²², однако, как показывают результаты данной работы, это количество, по-видимому, невелико и составляет незначительную долю от космогенного Na²².

Институт эволюционной физиологии и биохимии им. И. М. Сеченова Академии наук СССР Ленинград

Поступило 25 IX 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. А. Алекин, Л. В. Бражникова. Сток растворенных веществ с терригории СССР, «Наука», 1964. ² Н. П. Морозов, Океанология, 8, в. 2, 216 (1968). ² С. В. Калесник, Ладожское озеро, Л., 1968. ⁴ Гидрологический режим и водный баланс Ладожского озера. Тр. Лаб. озероведения Ленингр. унив., 20, Л., 1966. ⁵ И. В. Молчанов, Онежское озеро, Л., 1946. ⁶ Uusi Tietosanakirja, 17, Helsinki, 1964. ⁷ D. Lal, B. Peters, Cosmic Ray Produced Radioactivity on the Earth, Handbuch d. Physik, 46/2, 1967, p. 551. ⁶ W. Rödel, Zs. Naturforsch., 23a, 51 (1968). ⁹ А. А. Соколов, Гидрография СССР, Л., 1964. ¹⁰ Б. Д. Зайков, Средний сток и его распределение в году на территории СССР, Л., 1946. ¹¹ Атлас Ленинградской области, М., 1967. ¹² N. В handari, D. Lal, M. Rama, Tellus, 18, № 2—3, 391 (1966).