УДК 535.215

ТЕХНИЧЕСКАЯ ФИЗИКА

В. А. БЕНДЕРСКИЙ, В. Х. БРИКЕНШТЕЙН

ТЕРМИЧЕСКАЯ ИОНИЗАЦИЯ СИНГЛЕТНЫХ ЭКСИТОНОВ В ОРГАНИЧЕСКИХ ФОТОПРОВОДНИКАХ

(Представлено академиком В. Н. Кондратьевым 17 XI 1970)

Образование электронов и дырок при термическом распаде синглетных экситонов было обнаружено в кристаллах фталоцианина без металла (¹). Согласно (²), активационный процесс образования носителей тока присущ широкому классу органических фотопроводников, обладающих полосами собственного поглощения в области 1,7—2,5 эв. В настоящей работе показано, что представление об образовании носителей тока при активированном распаде молекулярных экситонов справедливо и для кристаллов красителя «основной ярко-зеленый оксалат», и обобщены данные работ (¹, ²).

Кристаллы красителя, выращенные из спиртово-ацетоновых (1:1)растворов методом испарения растворителя, имели размеры $10 \times 5 \times 3$ мм и шлифовались до необходимой толщины 0,5-1,0 мм. Квантовый выход и подвижность носителей тока измерены, как и в (¹), методом кристаллического счетчика. В качестве источника возбуждающих импульсов использовались лампа-вспышка с длительностью импульса 1,5 µсек и рубиновый лазер в режиме модуляции добротности (длительность импульса 80 нсек). Коэффициент поглощения кристалла на длине волны излучения лазера превышает $5 \cdot 10^4$ см⁻¹ (при работе со вспышкой использовались интерференционные фильтры), так что импульсные фототоки были обусловлены только пролетом носителей того же знака, что и освещаемый электрод. Произведение квантового выхода и подвижности измерено по фотоотклику при поперечном импульсном освещении в постоянном поле и поле с.в.ч. (³). Структурная формула катиона красителя

Элементарная ячейка красителя содержит четыре молекулы. Ее размеры: 15,25 Å; 15,04 Å; 11,98 Å; группа симметрии кристалла — C₂₂₂,

В кристаллах, из которых путем длительной откачки при 60—70° С удален кислород, фототоки электронов (j_n) и дырок (j_p) имеют близкие амплитуды. Время пролета по осциллограммам фотооткликов, в связи с быстрым прилипанием носителей тока ($\tau \sim 10^{-5}$ сек), нельзя установить достаточно точно, поэтому подвижности найдены с точностью до фактора 2 и равны $\mu_n = 0,1-0,2$ см² / (в сек), $\mu_p = 0,20-0,45$ см² / (в сек) *. Изменение подвижностей в области 270—370° К лежит в пределах указанных значений. Квантовый выход найлен из величины произведения квантового

^{*} Совпадающая с этим значением величина μ_p = 0,3-0,4 см²/(в.сек) была найдена из сравнения наблюдаемой зависимости эффективного времени спада фототока от толщины кристалла с теорией (⁴).

выхода и подвижности с учетом приведенных значений μ_n и μ_p . Квантовый выход электронов и дырок примерно одинаков ($\beta_n = \beta_p = 10^{-3} \cdot 1 \pm 0.5$ при 300° К) и экспоненциально растет с повышением температуры с энергией активации 0.18 ± 0.03 эв. По данным с.в.ч. измерений величина $G_e = = \beta_n \mu_n + \beta_p \mu_p = 3.4 \cdot 10^{-4} \text{ см}^2/(\text{в} \cdot \text{сек})$ при 295° К, при измерениях на постоянном токе $G_o = 2 \cdot 10^{-4} \text{ см}^2/((\text{в} \cdot \text{сек}))$. В обоих случаях G экспоненциально растет с температурой с той же энергией активации 0.18 эв.

Эти данные хорошо согласуются с результатами измерений методом кристаллического счетчика и, кроме того, показывают, что подвижность носителей тока слабо зависит от температуры и почти не испытывает

Рис. 1. Температурная зависимость квантового выхода фотоэффекта β в кристаллах красителя основной ярко-зеленый оксалат. *1* — кристалл после удаления кислорода (пологий участок при низких температурах обусловлен остаточной концентрацией примеси); *2* — тот же кристалл при измерениях на воздухе; *3* — пленка красителя с большим содержанием примеси. Квантовый выход рассчитан из измеренных значений G₀ при указанных в тексте подвижностях носителей тока

дисперсии (различие G_o и G_o лежит в пределах точности измерений) в области 0—10¹⁰ гц, что согласуется с представлениями о зонном, а не прыжковом механизме движения носителей тока (³).

По мере увеличения содержания кислорода в кристаллах, экспоненциальная зависимость $\beta(T)$ исчезает, j_n резко падает, а, судя по смазыванию точек пролета на кривых $j_p(t)$, уменьшается подвижность дырок (µ_p' ≪ 0,1 см²/(в.сек)). Значение G при 295° К остается примерно постоянным (рис. 1). Таким образом, с ростом концентрации кислорода изменяется механизм генерации носителей тока: активационный процесс генерации, в котором образуются одновременно электропы и дырки $(\beta_n \simeq \beta_p;$ $\varepsilon_n = \varepsilon_p$), заменяется не зависящим от температуры процессом, в котором образуются только дырки, причем их подвижность резко уменьшается, а время жизни электронов, оцененное по чувствительности установки, становится короче 3.10-9 сек *. Эти данные можно объяснить в модели, предложенной ранее для кристаллов и слоев фталоцианинов (¹, ⁶, ⁷). В отсутствие кислорода, играющего роль акцепторной примеси, основным процессом является термический распад синглетных экситонов. С ростом концентрации акцептора этот процесс маскируется понизацией экситонов на акцепторных уровнях с образованием свободных дырок и захваченных электронов. Введение акцепторной примеси уменьшает время жизни электронов и создает дополнительные уровни прилипания для дырок, уменьшая их дрейфовую подвижность (⁸).

Квантовый выход термической ионизации β_{T} связан со скоростью ионизации W_{si} соотношением

$$\beta_{\mathrm{T}} = W_{si}\tau_s / (1 + W_{si}\tau_s), \tag{1}$$

где т. — время жизни синглетных экситонов. Поскольку рассматриваемые вещества не флуоресцируют, т. можно оценить лишь из косвенных данных. Квантовый выход ионизации экситонов на примеси в слоях фталоцианинов равен 0,3—0,4 при ее концентрации $N_{\rm II} \simeq 10^{19}$ см⁻³ (⁷). Согласно (²),

^{*} Наличие непрерывного спектра дырочных ловушек в кристаллах, содержащих кислород, было доказано по кинетике фототока, как и в (⁸). Плотности ловушек $10^{18}-10^{19}$ см⁻³, $\mu_p' \simeq 1.5 \cdot 10^{-3}$ см²/(в сек).

 $\beta_{\pi} \simeq 0.1$ при тех же значениях N_{π} и в других фотопроводниках. Из соотношения

$$\beta_{\Pi} = 4\pi D_s \tau_s a_{\Pi} N_{\Pi} / \left(1 + 4\pi D_s \varepsilon_s a_{\Pi} N_{\Pi} \right), \tag{2}$$

где $a_{\rm II}$ — эффективный радиус ионизации, который близок к молекулярным размерам (3-5 Å), диффузионная длина синглетных экситонов $l_s = (D_s \tau_s)^{\frac{1}{2}}$ составляет 50—80 Å. Поскольку подвижность носителей тока во фталоцианине и исследованных веществах меньше, чем в антрацене (⁹) в 1,5—3 раза при одинаковом механизме переноса, можно считать, что Dв этих соединениях близки к D, в антрацене (3,5 · 10⁻³ см²/сек (¹⁰)) и составляют 1—2 · 10⁻³ см²/сек. При этом $\tau_s = 1 - 6 \cdot 10^{-10}$ сек. Можно предположить, что для всех рассматриваемых фотопроводников τ_s лежит в интервале 10⁻¹⁰ — 10⁻⁹ сек.

Из условий ионизационного равновесия

$$W_{si} = \frac{N_e N_p}{N_s} \gamma_{si} e^{-(\Delta - \epsilon_g)/kT} , \qquad (3)$$

где N_c , N_p , N_s — плотности состояний в зонах носителей тока и в экситонной зоне, Δ и ε_s — ширина запрещенной зоны и энергия синглетного экситона соответствению, γ_{st} — константа скорости рекомбинации при связывании носителей тока в синглетные экситоны. Для узких зон $N_c \simeq N_p \simeq N_c \simeq$ $\simeq 10^{21}$ см⁻³ (¹¹), $\Delta - \varepsilon_s$ равно экспериментально наблюдаемой энергии активации $\beta_{\rm T}$. Ниже приводятся константы термической ионизации синглетных экситонов для различных красителей.

Краситель		¢T, 30	β_{T} (300°K)	W0 75	Υ [*] _{si} , cm ^s /cen
Фталоциании без металла	кристалл	0,19	7 ± 6.10^{-5}	0,1	1,6.10-12
Основной ярко-зе- леный оксалат	20	0,18	$1 \pm 0,5.10^{-3}$	0,7	7.10-12
Бриллиантовый зеленый	пленка	0,08	6,5-10-3	0,16	1,6.10-12
Малахитовый зе- леный		0,12	6,0·10 ⁻³	0,6	6-10-12
Родамин С	*	0,09	1,0.10-3	0,03	3.10-13
Кристаллический фиолетовый		0,09	2,6-10-3	0,09	9.10-13

* γ_{si} рассчитано при $\tau_s = 10^{-10}$ сек.

Найденные из (3) значения у существенно меньше полной константы рекомбинации у., которая для узких зон должна быть близка к кулоновской $(\gamma_k' = 4\pi e\mu/k_0)$ (^{iz}) и при диэлектрической постоянной $K_0 = 3,5-5$ составляет 10-7-10-6 см3/сек (для фталоцианина в (9) показано, что $\gamma_0 = 1 \pm 0.8 \cdot 10^{-7} \text{ см}^3/\text{сек})$. Отношение $\gamma_{st}/\gamma_0 \sim 10^{-7} - 10^{-4}$ показывает, что вероятность образований синглетных возбуждений при рекомбинации носителей тока весьма мала. Бимолекулярная рекомбинация может происходить либо путем излучательного межзонного перехода, либо через промежуточные связанные состояния. При ширине запрещенной зоны около 2 эв сечение излучательной рекомбинации исчезающее мало (10^{-20} cm^2) . и рекомбинация обусловлена исключительно процессами второго типа. Из приведенных данных следует, однако, что промежуточными состояниями при рекомбинации не являются молекулярные экситоны. В (14) на основании расчета одномерной модели предполагалось, что рекомбинация в молекулярных кристаллах является многоступенчатым процессом с промежуточным образованием экситонов переноса. Если предположить, что экситоны переноса с большей вероятностью конвертируют в основное, а не возбужденное молекулярное состояние, можно объяснить малые значения уsi / уо, наблюдаемые экспериментально.

Авторы благодарят Л. О. Атовмяна и Р. П. Шибаеву за проведение рентгеноструктурного анализа кристаллов.

> Поступило 22 IX 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ V. А. Benderski, N. N. Usov, Phys. Stat. Solidi, **37**, 535 (1970). ² В. Х. Брикенштейн, В. А. Бендерский, ДАН, 191, 122 (1970). ⁵ Э. И. Адирович, В. А. Бендерский и др., ФТП, 5, № 1 (1971). ⁴ В. И. Ляшенко, Электроные явления на поверхности полупроводников, Киев, 1968. ⁵ Solid State Physics, **21**, N. Y.-London, 1968. ⁶ В. А. Бендерский, Н. Н. Усов, М. И. Федоров, ДАН, 183, 1117 (1968). ⁷ М. И. Федоров, В. А. Бендерский, ФТП, 4, 1403 (1970). ⁸ Н. Н. Усов, В. А. Бендерский, Физ. и техн. полупроводников, **4**, 405 (1970). ⁹ Там же, **119**, 1226 (1960). ¹⁹ В. М. Агранович, Теория экситонов, «Наука», 1968, стр. 342. ¹¹ Ф. Гутман, Л. Лайонс, Органические полупроводники, М., 1970. ¹² W. Helfrich, W. G. Schneider, J. Chem. Phys., 44, 2902 (1966). ¹³ А. Роуз, Основы теории фотопроводимости; М., 1968. ¹⁴ В. А. Бендерский, Л. А. Блюменфельд, Д. А. Попов, ЖСХ, 7, 370 (1966).