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AHHOTammsl. J{ys MPOTHO3MPOBAHHUS XapaKTEPUCTHK MeTaMaTepHala-(ha3oMaHUITyIATOpa MPOBEICHAa ONTHMHU3ALMUS COOTBET-
CTBYIOIIUX [TapaMETPOB TAaKOTO YCTPONCTBA C UCIOIb30BAaHHEM HUCKYCCTBEHHOH HEHPOHHOM CeTH M TeHeTHYEeCKOTo aJropuTMa.
IToka3aHo, YTO OTHOCHTENbHAS IOTPENIHOCT ONPEEICHUs 3HAUCHUH HCCIIeyeMbIX ITapaMeTpoB He IpeBbicuIa 1% 1mo cpas-
HEHHIO CO 3HAUEHHUSIMH, PACCUNTAHHBIMU METOIOM KOHEUHBIX 2J1€MEHTOB.

KualoueBble cnoBa: memamamepuan, GpazomMaHunyisamop, niaHapuas CRUpaib, UCKYCCIMBEHHbIe HelpOHHble cemu, 2eHemutye-
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Abstract. To predict the characteristics of the metamaterial-phase-manipulator, the optimization of the relevant parameters of
such a device was carried out using an artificial neural network and a genetic algorithm. It is shown that the relative error in
determining the values of the investigated parameters did not exceed 1% compared to the values calculated by the finite element
method.

Keywords: metamaterial, phase manipulator, planar spiral, artificial neural networks, genetic algorithms.
For citation: Optimization of metamaterial phase manipulator parameters using neural network modeling and genetic

algorithm / P.V. Somov, A.L. Samofalov, Yu.V. Nikityuk, S.A. Khakhomov, I.V. Semchenko, Dazhi Ding // Problems of
Physics, Mathematics and Technics. — 2025. — Ne 1 (62). — P. 58-63. — DOI: https://doi.org/10.54341/ 20778708 2025 1 62 58.—

EDN: CMNQKR

Introduction

Metamaterials and metasurfaces have signifi-
cant scientific interest for many research groups
around the world. These artificial structures possess
unique properties not observed in natural materials:
a negative refraction index, low diffraction limit of
an object image, complete absorption in a specific
frequency range, etc. [1]-[4].

Currently, artificial neural networks and ge-
netic algorithms are successfully used in various
fields of science and technology. Artificial neural
networks provide the ability to find complex nonlin-
ear dependencies in the studied functions of many
arguments, which manifest when modeling the

interaction of electromagnetic waves with metamate-
rials. Genetic algorithms are a specific case of evolu-
tionary methods based on collective learning within
a population and imitating natural selection. Genetic
algorithms provide the search for the best solutions
by inheriting and enhancing the useful properties of
many objects during the simulation of their evolu-
tion [S]-[11].

In this work, artificial neural networks and ge-
netic algorithms are applied to predict and optimize
the parameters of a metamaterial for the possibility
of phase manipulation of electromagnetic waves
when interacting with a metasurface based on planar
resonators.
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1 Modeling

The project of a metamaterial phase manipula-
tor consisting of 25-paired planar spiral resonators
located on a dielectric layer is built via Ansys HFSS
software (Figure 1.1, a). The resonators are copper
strips and cylinders connecting both sides of the
structure. Each resonator also contains a varicap.

The metamaterial modeling was based on dou-
ble-sided FR4 fiberglass with a core thickness of
1.5 mm and copper layers with a thickness of 35
microns. As a screen behind the metamaterial, a sin-
gle-sided FR4 fiberglass surface was used with the
same core and copper layer thickness.

The wavefront emitted by the metasurface with
given radiation pattern diagram parameters (Figure
1.1, b) is formed due to the presence of a difference
in wave paths or phase shift of the wave. This is
achieved by changing the capacitance of the varicaps
on neighboring resonators. By setting the capaci-
tance value C of the varicaps in the first row (since
in each row C is the same), and then in the next row
according to the required phase difference, it is pos-
sible to control the tilt of the main lobe of the meta-
material’s radiation pattern diagram in the XOZ
plane.

¥ -19.2

Figure 1.1 — The project of the metamaterial consist-
ing of 25-paired planar spiral resonators located on
the dielectric layer (a); an example of a radiation
pattern diagram formed by the metasurface ().
Here, dx is the distance between the centers
of resonators in the metasurface, Cvr is the varicap
with the specified capacitance.
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To form the training and testing data arrays for
artificial neural networks, the radiation pattern cal-
culations were performed using the finite element
method in Ansys HFSS.

The input parameters are adjusted in such a
way that the metamaterial has a radiation pattern
diagram with the minimum lobe width, which allows
obtaining concentrated space radiation of maximum
power. During the research, it was found that the
most effective parameters for solving this problem
are the inter-element distance (spatial period of the
metasurface dx) and the capacitance of the varicaps.

The geometric parameters of the planar spiral
resonators were pre-determined by analytical meth-
ods for calculating the polarizations of any particle
of arbitrary shape, the linear dimensions of which
are small compared to the wavelength, as described
in the work [12].

2 Solving optimization problem

During the numerical experiment, a sample
formed in the DesignXplorer module of the Ansys
Software was used.

According to the experiment plan, the calcula-
tions were performed for two input parameters: P1 is
varicap capacitance Cvr, P2 is inter-element distance
dx. At the same time, the following output parame-
ters were determined: the electric field intensity at
the maximum of the radiation pattern diagram E and
the lobe width of the radiation at half the power of
the radiation dTheta. Thus, the research object
model was response functions linking the output
parameters (E, dTheta) with the factors (dx, Cvr)
(Table 2.1).

Figure 2.1 shows the dependencies of E and
dTheta on the input parameters, and Figure 2.2
shows their response surfaces.

Table 2.1 — Parameters of planar spiral
resonators

Input parameters Value of input parameters

P2 (dx, mm) 28,29, 30, 31, 32, 33, 34, 35,

36,37, 38, 39, 40

P1 (Cvr, pF) 0.1-0.5

The calculations were performed for 533 com-
binations of input parameters (Figure 2.1), 513 of
which used for training artificial networks and 20 for
testing (Table 2.2).

Artificial neural networks were formed using
the TensorFlow machine-learning library. The ReLu
activation function, Adam optimizer, and MSE loss
function were used in creating the networks. The
neural network underwent training for a total of 700
epochs. As a result, 25 artificial neural networks
were created with the number of neurons in the two
hidden layers ranging from 10 to 50 with an interval
of 10.
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Figure 2.1 — Dependence of electric field intensity on the angle of rotation of the radiation pattern diagram
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Figure 2.2 — Response surfaces of E () and dTheta (b)
Table 2.2 —Test dataset

The following criteria were used to evaluate

N _|Cvr, pF| dx, mm |, dB|dTheta, deg the obtained models: root mean squared error
1 0.24 30 |11.31 29 (RMSE), mean absolute error (MAE) and the coeffi-
2 0.24 32 10.36 28 cient of determination R:

3 0.21 38 8.31 25 -

4 1012 [ 31 [1297] 34 RMSE = |23 (d, -y,

5 0.44 29 110.80 31 iz

6 0.45 36 6.87 25 U 2

7 | 022 | 33 [11.78] 29 | .2 (di =)

8 | 039 | 30 [1034] 31 MAE=—3 |d, =], R® =1-5—,

9 [ 038 | 28 [I11.19] 32 - >(d,-d)

10 | 032 34 |11.12 42 =

11 0.48 34 276 27 where d, represents the values, calculated using
12 0.17 36 9.28 23 finite element analysis; y, denotes the values, calcu-
13 0.37 33 9.20 29 lated using neural network predictions.

14 | 0.14 33 |11.51 25 Figure 2.3 shows the heat maps illustrating the
15 | 049 38 1594 23 distribution of validation errors in determining the
16 | 043 33 8.84 28 output parameters. The vertical and horizontal axes
17 0.41 29  110.71 31 show the number of neurons in the first and second
18 0.11 31 12.14 30 hidden layers of artificial neural networks, respec-
19 0.12 35 [11.02 31 tively. The intensity of the color-coding indicates the
20 0.19 28 13.35 63 magnitude of the error: the error increases as the

color transitions from light to dark.
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Figure 2.3 — Heat maps of distribution RMSE (a), MAE (b), R* (c) (darker color there means higher
determination) for E and heat maps of distribution RMSE (d), MAE (e), R* (f) (darker color there means higher
determination) for dTheta
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Figure 2.4 — Candidate points calculated via finite element analysis

The neural network with the architecture [2-10-
40-2] demonstrated superior performance in deter-
mining the values of E, whereas the network with
the architecture [2-50-40-2] achieved the highest
accuracy in determining the values of dTheta. Here,
the numbers 2 in square brackets indicate the fact
that the analysis is performed using two input and
two output parameters. Table 2.2 presents the
evaluation results of the corresponding neural net-
work models.

Table 2.2 — Results of neural network model
evaluation

Criteria E dTheta,
RMSE 0.3 dB 2.1 deg
MAE 0.2 dB 1.3 deg

R? 0.9715 0.9398

The optimization problem was to find the
minimum module of the intensity E, expressed in
decibels, and the minimum dTheta. The lobe width
of the radiation at half power was calculated from
the maximum intensity of the obtained directional
diagram by subtracting 4 dB.

Table 2.3 presents the values of the candidate
points found through the genetic algorithm. Figure
2.4 shows the actual values of these points, calcu-
lated via the finite element analysis. The minus signs
on the Y-axis indicate that the values taken in deci-
bels; however, we considered the modules of these
values and it is easy to notice that the values pre-
dicted by the neural network closely match the ana-
lytical ones.

Table 2.3 — Values of candidate points

Point 1 2 3
P2 — dx, mm 40 37.6949 | 36.0617
P1 - Cvr, pF 0.4551 | 0.1013 0.4957
P3-E,dB 5.1408 | 5.6246 6.8716
P4 — dTheta, deg | 21.8735 | 22.7504 | 23.8187
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Conclusion

The obtained results allow us to conclude that
neural network models are sufficiently effective in
predicting the parameters of metamaterials, which in
turn provides the possibility of optimizing the corre-
sponding parameters using genetic algorithms. At
the same time, the relative error in determining the
values of the studied parameters did not exceed 1%
compared to the values calculated using the finite
element method.
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