**У**ЛК 539.2+541.42.011.3+669-454

ФИЗИЧЕСКАЯ ХИМИЯ

## И. А. НОВОХАТСКИЙ, академик АН УССР В. И. АРХАРОВ

## КОЛИЧЕСТВЕННАЯ ОЦЕНКА СТРУКТУРНОЙ МИКРОНЕОДНОРОДНОСТИ ЖИДКИХ МЕТАЛЛОВ

Для развития количественной теории квазиполикристаллической модели  $\binom{1-6}{}$  необходима разработка методов определения относительных долей структурных составляющих расплавов: кластеров и разупорядоченной зоны. Этими характеристиками определяются многие структурночувствительные свойства расплавов и процессы, связанные с изменением их структуры.

В настоящем сообщении излагается метод определения этих характеристик в однокомпонентных металлических расплавах в широком интервале температур. Предполагается, что при больших перегревах расплавов кластеры в них полностью исчезают и жидкость становится структурно однородной, состоящей только из разупорядоченной зоны. Температура такого полного разупорядочения расплава ( $T_{\rm pas}$ ) разделяет две области различных температурных зависимостей какого-либо объемного структурно зависимого свойства жидкого металла. В области  $T > T_{\rm pas}$  температурная зависимость структурно зависимого свойства ( $\Phi$ ) в рамках нашей модели может трактоваться как температурная зависимость парциального свойства для разупорядоченной зоны ( $\Phi_{\rm pas}$ ). Экстраполяцией в область  $T < T_{\rm pas}$  можно рассчитать значения  $\Phi_{\rm pas}$  и для низких температур—вилоть до температуры плавления металла ( $T_{\rm nn}$ ). Допуская аддитивность распределения рассматриваемого объемного свойства по структурным составляющим расплава для всех  $T \gg T_{\rm nn}$ , можно записать

$$\Phi = \Psi_{\text{pas}} \Phi_{\text{pas}} + \Psi_{\text{к.т}} \Phi_{\text{к.т}}, \tag{1}$$

где  $\Phi_{\kappa\pi}$  — парциальное свойство для кластеров,  $\Psi_{\text{раз}}$  и  $\Psi_{\kappa\pi}$  — относительные доли соответственно зоны разупорядочения и кластеров в расплаве, связанные равенством

 $\Psi_{\text{pas}} + \Psi_{\text{kil}} = 1. \tag{2}$ 

Располагая значениями  $\Phi$ ,  $\Phi_{\text{раз}}$  и  $\Phi_{\text{кл}}$ , определенными по опытным данным, в общем случае по уравнениям (1) и (2) можно рассчитать  $\Psi_{\text{раз}}$  и  $\Psi_{\text{кл}}$  для жидких металлов при различных T.

Поскольку одновременное определение парциальных величин  $\Phi_{\rm pas}$  и  $\Phi_{\rm кл}$  составляет трудную экспериментальную задачу, представляет интерес отыскание частных случаев, упрощающих решение. Например, когда  $\Phi_{\rm pas}\gg\Phi_{\rm kn}$ , то вкладом зоны кластеров ( $\Psi_{\rm kn}$ ,  $\Phi_{\rm kn}$ ) в общее свойство расплава можно пренебречь. Значение  $\Psi_{\rm pas}$  может быть получено экстраполяцией зависимости  $\Phi=f(T)$  для полностью разупорядоченного жидкого металла в область  $T< T_{\rm pas}$ . Экспериментальное определение значений  $\Phi$  в широкой области температур не представляет принципиальных трудностей. Экстраполяционный метод в таком варианте применим только к металлам, у которых отсутствует полиморфизм упорядоченной структуры кластеров во всей области от  $T_{\rm nx}$  до  $T_{\rm pas}$ .

Можно провести и полное решение уравнения (1) экстраполяционным методом, если значения  $\Phi_{\text{раз}}$  получать экстраполяцией  $\Phi$  из области высоких T ( $T > T_{\text{раз}}$ ), а  $\Phi_{\text{кл}}$  найти экстраполяцией в область  $T \geqslant T_{\text{пл}}$  зависимости  $\Phi = f(T)$ , определенной для твердого металла при  $T < T_{\text{пл}}$ . В частности, таким методом нами (7) были определены  $\Psi_{\text{раз}}$  для жидкого никеля. Применимость этого варианта экстраполяционного метода ограничивается металлами, не имеющими полиморфных превращений как в твердом (по крайней мере за  $250-300^{\circ}$  K до  $T_{\text{пл}}$ ), так и в жидком

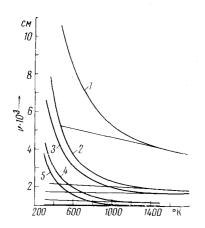



Рис. 1. Температурные зависимости кинематической вязкости жидких металлов: 1-Li, 2-Na, 3-K, 4-Rb, 5-Cs

состояниях и сохраняющим в кластерах тип и параметры упаковки атомов, близкие к таковым для твердого состояния. Возможны и другие (более сложные) частные случаи решения уравнения (1), один из которых ( $\Phi_{\text{раз}} \cong \Phi_{\text{кл}}$ ) использован нами ниже в расчетах  $\Psi_{\text{раз}}$  для жидких щелочных металлов по температурным зависимостям их теплоемкостей.

Нами были определены величины  $T_{\rm pas}$ ,  $\Psi_{\rm pas}$  и тепловых эффектов процесса разупорядочения кластеров ( $\Delta H_{\rm pas}$ ) для Li, Na, K, Rb и Cs по двум структурно-чувствительным свойствам: по кинематической вязкости v (динамическое свойство) и по теплоемкости  $C_p$  (статическое свойство). В литературе имеются достаточно надежные и хорошо согласующиеся экспериментальные данные по теплофизическим свойствам щелочных металлов, обобщенные в монографии ( $^8$ ) для относительно больших

степеней перегрева их над температурами плавления (на  $1000-1500^{\circ}$  K). На рис. 1 представлены, по данным ( $^{\circ}$ ), температурные зависимости v щелочных металлов от температур их плавления до  $1500-1800^{\circ}$  K. Анализ кривых показывает, что экспоненциальная зависимость v=f(T), имеющаяся при низких значениях T, сменяется линейной зависимостью v=f(T), в свете изложенных выше представлений являются температурами полного разупорядочения расплавов. Определенные из рис. 1 значения  $T_{\text{раз}}$  представлены в табл. 1 в сопоставлении с таковыми, найденными из температурных зависимостей  $C_p$  (рис. 2).

При построении графиков рис. 2 были использованы данные Аладьева и Пчелкина из (\*) для Li(ж) (100—1300° C), экстраполированные нами до 1600° C с помощью зависимости

$$C_p = 8,5016 - 3,6435 \cdot 10^{-3} t + 1,7350 \cdot 10^{-6} t^2$$

для Na(ж) - (300-1300° C) данные тех же авторов, экстраполированные нами до 1500° C с помощью уравнения

$$C_p = 8{,}1391 - 2{,}6450 \cdot 10^{-3} t + 1{,}4375 \cdot 10^{-6} t^2$$

для K(ж) использованы данные ( $^{8}$ ), до  $800^{\circ}$  K — по обобщающим таблицам, от 900 до  $1400^{\circ}$  K — по соотношению

$$C_p = 8,879 - 4,566 \cdot 10^{-3} T + 2,942 \cdot 10^{-6} T^2$$

для  $\mathrm{Rb}(\mathfrak{R})$  и  $\mathrm{Cs}(\mathfrak{R})$  — по обобщающим таблицам ( $^{\mathrm{s}}$ ). Кривые зависимости  $C_p = f(T)$  для всех исследованных щелочных металлов однотипны: они имеют минимум  $C_p$  в области средних температур и практически линей-

|                                   | Li    | Na    | К     | Rb    | Cs    |
|-----------------------------------|-------|-------|-------|-------|-------|
| $T_{\text{пл}}$ , °K (8)          | 453,7 | 371,0 | 336,7 | 316,7 | 301,6 |
| $T_{\text{pas}}$ , °K (по v)      | 1400  | 1400  | 1400  | 1200  | 1000  |
| $T_{\text{pas}}$ , °K (по $C_p$ ) | 1600  | 1600  | 1200  | 1000  | 900   |

ный подъем  $C_p$  — в области высоких. Температуры перехода к линейным участкам на кривых  $C_p = f(T)$  также отвечают температурам полного разупорядочения жидких металлов. Сопоставление значений  $T_{\rm pas}$ , определенных по температурным зависимостям v и  $C_p$ , приведенное в табл. 1, обнаруживает хорошее их согласование. Полное разупорядочение щелочных металлов достигается только при высоких степенях перегрева их над  $T_{\rm пл}$  порядка  $600-100^{\circ}$  K (повышаясь в ряду c — Li).

Соотношение (1) для жидкотекучести металлических расплавов принимает вид

$$1/v = \Psi_{\text{pas}}/v_{\text{pas}} + \Psi_{\text{в.п.}}/v_{\text{в.п.}}, \qquad (3)$$

в котором  $v_{\text{раз}}$  и  $v_{\text{кл}}$  — парциальные кинематические вязкости разупорядоченной зоны и кластеров соответственно. Упаковка и состояние атомов в кластерах согласно квазиполикристаллической модели (1) подобны таковым в кристаллах, и, можно полагать,  $v_{\text{кл}} \gg v_{\text{раз}}$  (и  $v_{\text{кл}} \gg 1$ ). Тогда, пренебрегая вторым слагаемым уравнения (3), получим:

$$\Psi_{\text{pas}} \cong \nu_{\text{pas}} / \nu. \tag{4}$$

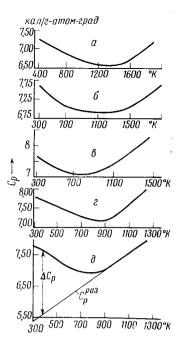



Рис. 2. Температурные зависимости теплоемкости жидких металлов: a — Li,  $\delta$  — Na,  $\epsilon$  — K,  $\epsilon$  — Rb,  $\partial$  — Cs

Отсюда по величинам  $v_{\text{раз}}$  и v, определяемым из графиков рис. 1 ( $v_{\text{раз}}$  — по экстраполяции линейного участка, v — по кривой), представляется возможным рассчитать величины  $\Psi_{\text{раз}}$  для исследованных металлов в интервале  $T_{\text{пл}} - T_{\text{раз}}$ . Найденные таким образом значения относительных долей разупорядоченной зоны для различных температур приведены в табл. 2.

На рис. 2 (для  $C_s(\mathfrak{H})$ ) показано, как с помощью линейной экстраноляции зависимости  $C_p = f(T)$  для  $T > T_{\text{раз}}$  можно найти парциальные величины теплоемкости разупорядоченной зоны для более низких температур (для  $T < T_{\text{раз}}$ ). Они оказываются в области от  $T_{\text{пл}}$  до  $T_{\text{раз}}$  существенно меньшими по сравнению с общей теплоемкостью расплавов. Если допустить, что парциальные теплоемкости для разупорядоченной зоны и зоны кластеров равны  $(C_p^{\text{кл}} \cong C_p^{\text{раз}})$ , то превышение общей  $C_p$  над  $(C_p^{\text{раз}}\Psi_{\text{раз}} + C_p^{\text{кл}}\Psi_{\text{кл}}) \cong C_p^{\text{раз}}$  (обозначенное на рис. 2 как  $\Delta C_p$ ) представляет собой физически удельное тепло, затрачиваемое при данной температуре на разупорядочение кластеров, сопрсвождающее нагревание расплава. В этом случае изменение энтальпии расплава из-за разупорядочения кластерой

|                                         | Li                                                   |                                                      | Na                                                   |                                                      | К                                                    |                                              | Rb                                                   |                                      | Cs                                   |                              |
|-----------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------|
| <i>T</i> , °K                           | по у                                                 | по Ср                                                | поч                                                  | no $C_p$                                             | ע סוו                                                | по Ср                                        | по и                                                 | no $\mathbf{c}_p$                    | по у                                 | по Ср                        |
| $T_{\rm mn}$ 500 700 900 1100 1300 1500 | 0,50<br>0,51<br>0,69<br>0,80<br>0,92<br>0,97<br>1,00 | 0,40<br>0,46<br>0,69<br>0,81<br>0,91<br>0,97<br>1,00 | 0,23<br>0,45<br>0,66<br>0,82<br>0,92<br>0,98<br>1,00 | 0,38<br>0,57<br>0,76<br>0,88<br>0,97<br>0,99<br>1,00 | 0,29<br>0,49<br>0,68<br>0,82<br>0,92<br>0,99<br>1,00 | 0,44<br>0,69<br>0,88<br>0,97<br>0,99<br>1,00 | 0,31<br>0,57<br>0,77<br>0,77<br>0,92<br>0,99<br>1,00 | 0,42<br>0,73<br>0,92<br>0,99<br>1,00 | 0,27<br>0,54<br>0,74<br>0,89<br>1,00 | 0,45<br>0,81<br>0,97<br>1,00 |

при нагревании его от  $T_{\text{пл}}$  по заданной T определится равенством  $\Delta H_1 = \int\limits_{T_{\text{пл}}}^T \Delta C_p dT.$ 

$$\Delta H_1 = \int_{T_{\text{right}}}^{T} \Delta C_p dT.$$

При  $T=T_{\text{раз}}$  величина  $\Delta H_{\text{t}}$  принимает максимальное значение.

Общее изменение энтальнии 1 г-атома металла при переходе его из твердого состояния при  $T_{\text{пл}}$  в жидкое при  $T < T_{\text{раз}}$  составляет

$$\Delta H_2 = \Delta H_{\mathrm{III}} + \int\limits_{T_{\mathrm{III}}}^{T} \Delta C_p dT,$$

где  $\Delta H_{\rm nn}$  — теплота плавления. Полагая, что  $\Psi_{\rm pas}$  пропорциональна количеству теплоты, потраченному на разупорядочение металла при плавлении и нагревании его от  $T_{nn}$  до T, получим

$$\Psi_{\text{pas}} = \left(\Delta H_{\text{pas}} + \int_{T_{\text{HII}}}^{T} \Delta C_{p} dT\right) / \left(\Delta H_{\text{pas}} + \int_{T_{\text{HII}}}^{T_{\text{pas}}} \Delta C_{p} dT\right).$$
 (5)

По уравнению (5) графическим интегрированием зависимостей рис. 2 є привлечением данных (3) по теплотам плавления рассчитаны значения  $\Psi_{\text{раз}}$  для щелочных металлов (табл. 2). Величины  $\Psi_{\text{раз}}$ , рассчитанные по двум структурно-чувствительным свойствам (v и  $C_p$ ) двумя принципиально различными вариантами экстраполяционного метода, вполне удовлетворительно согласуются между собой для всех рассмотренных металлов. Степень разупорядочения расплавленных щелочных металлов при  $T_{
m n\pi}$  составляет 30-45% и увеличивается с ростом T. Зависимость  $\Psi_{\rm pas}^{\rm r}=f(T)$  может быть описана экспонентой вида  $\Psi_{\rm pas}=A\cdot\exp{\{-\Delta H_{\rm pas}/RT\}}$ , где A — постоянный множитель. Величины  $\Delta H_{ exttt{pas}}$  процессов разупорядочения кластеров в исследованных расплавах, рассчитанные по данным табл. 2, представлены в табл. 3. Опи находятся в пределах 950-1250 кал/г-атом.

Тепловые эффекты процессов термического разупорядочения кластеров  $\Delta H_{\mathrm{pas}}$  в расплавах щелочных металлов

Таблица 3

|                                                                                       | Li   | Na   | К    | Rb   | Cs   |
|---------------------------------------------------------------------------------------|------|------|------|------|------|
| $\Delta H_{ m pas}$ по v, кал/г-атом $\Delta H_{ m pas}$ по $C_{\cal D}$ , кал/г-атом | 1000 | 1400 | 1109 | 1000 | 1100 |
|                                                                                       | 1300 | 1000 | 1300 | 1000 | 800  |

Таким образом, в рамках квазиполикристаллической модели расплавленных сред предлагаемый экстраноляционный метод позволяет по экспериментальным данным о температурных зависимостях объемных структурно-чувствительных свойств (аддитивно распределяемым по структурным составляющим расплава) определить температуры полного разупорядочения расплавов, относительные доли структурных составляющих при различных температурах и тепловые эффекты процессов термического разупорядочения кластеров в них. В описанном варианте область применимости экстраполяционного метода ограничивается однокомпонептными расплавами — как металлическими, так и окисными, солевыми и др.

Донецкий физико-технический институт Поступило Академии наук УССР

цитированная литература ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Архаров, И. А. Новохатский, ДАН, 185, № 5, 1069 (1969). ² И. А. Новохатский, В. И. Архаров и др., ДАН, 194, № 4, 827 (1970). ³ В. И. Архаров, Г. С. Ершов и др., ДАН, 190, № 2, 366 (1970). ⁴ В. И. Архаров, Г. С. Ершов, И. А. Новохатский, Физ. мет. и металловед., 31, № 3, 652 (1974). ³ В. И. Архаров, Г. С. Ершов, И. А. Новохатский и др., ДАН, 190, № 6, 1329 (1970). ⁵ В. И. Архаров, Г. С. Ершов, И. А. Новохатский, Физ. мет. и металловед., 29, № 4, 876 (1970). ¬ И. А. Новохатский, В. И. Архаров, Физ. мет. и металловед., 31, № 6, 1263 (1971). <sup>8</sup> Э. Э. Шпильрайн, К. А. Якимович и др., Теплофизинские сройстве могализм. лофизические свойства щелочных металлов, М., 1970. 908