УДК 550.42:(552.124.3+552.323.6)

ГЕОХИМИЯ

и. п. илупин, а. п. хомяков, ю. а. балашов РЕДКИЕ ЗЕМЛИ В АКЦЕССОРНЫХ МИНЕРАЛАХ КИМБЕРЛИТОВ ЯКУТИИ

(Представлено академиком Д. С. Коржинским 4 XI 1970)

О распространенности индивидуальных редкоземельных элементов в минералах кимберлитов до последнего времени можно было судить лишь на основании отрывочных данных (1-3). Настоящая работа посвящена исследованию распределения ТВ в апатите, цирконе, перовските, ппрохлоре и монаците * из кимберлитов и родственных им пород Западной Якутии (рис. 1).

В пределах Якутской алмазоносной провинции, по данным (2, 4-7). наряду с трубками взрыва, выполненными кимберлитовой брекчией или



Рис. 1. Схема размещения кимберлитовых полей Западной Якутии (4). I — районы кимберлитового вулканизма: I — Мало-Ботуобинский, II — Далдыно-Алакитский, III — Мунский, IV — Средне-Оленекский, V — Приленский, VII — Куонапский, 2 — граница Сибирской платформы

кимберлитом (Мало-Ботуобинский, Далдыно-Алакиткий, Верхие-Мунский, Средне-Оленекский, Приленский, Нижне-Оленекский районы), широко распространены трубки взрыва, выполненные эксплозивными карбонатитовыми брекчиями с редкометальной минерализацией (Куонапский район); значительное распространение имеют проявления неалмазоносных кимберлитов и пикритовых порфиритов; с некоторыми кимберлитовыми трубками пространственно сопряжены жильные существенно карбонатные породы порфирового облика (дайка «Снежинка»).

Апатит в кимберлитах представлен главным образом крупными (до 10—15 мм в диаметре) овальными зернами с шероховатой поверхностью, в эксплозивных карбонатитовых брекчиях—преимущественно хорошо ограненными короткостолбчатыми, реже длиннопризматическими кристаллами размером около 0,25—0,5 мм. Циркон в кимберлитах в основном представлен неправильными округлыми и овальными зернами

с шероховатой поверхностью размером от 1 до 5, реже до 10 мм. Перовскит рассеян в кимберлитах в виде очень мелких (0,02—0,05, редко до 0,1 мм в поперечнике) кристаллов кубической формы. Пирохлор и монацит являются характерными акцессорными минералами карбонатитовых брекчий, в которых они встречаются в виде хорошо образованных октаздрических (пирохлор) и таблитчатых (монацит) кристаллов размером до 0,5 мм.

^{*} Основная часть изученных минералов получена И. П. Илупиным из протолочных проб пород, предварительно освобожденных от обломков ксепогенного материала. Ряд образцов был любезно предоставлен в наше распоряжение В. Ф. Кривоносом в В. А. Милашевым.

Распределение редких земель в акцессорных минералах кимберлитов и родственных им пород*

Таблица 1

	,	1			,										
№№ п. п.	Минерал	Местонахождение	TR ₂ O ₃ sec. %	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Er	Υb	Y
	1							1							
1	Апатит	«Светлая», Далдыно-Алакитский район, кимбер- лит	0,38	4 5,0	42,1	5,9	22,2	4,4	1,2	3,6		2,6	1,9	1 ,2	14
2	»	«Хризотиловая», Приленский район, кимберлит	0,47	19,7	40,7	5,6	23,4	4,2	1.0	2,9	_	1,4	0,8	0,4	7
3	»	Тоже	0,55	18,1	47,7	6,2	20,8	$\frac{1}{2.8}$	1,1	[2,0]	0.1	0,8			
4	»	«Маричка», Приленский район, кимберлит	0.33	19,2	41,2	5,6	22,2		0,8	2,9		1,9	1 ,2	0,9	10
5	»	«Русловая», Ни кне-Оленекский район, кимберлит	1,23	18,0	41,3		24,4		0,8		0,7	1.5	0,8	0,4	6.1
6	»	Куонапский район, пикритовый порфирит (?)	0,44	18,6	41,1	4,8	22,9		0,9	3,4		2,2	1,3	0,8	1 0
7	»	Там же, эксплозивная карбонатитовая брекчия	0,65	19,6	42,0	4,9	23,4	3,7	1,0	2,6	l —	1,2	0,9		8,1
8	»	«Снежинка», Средне-Оленекский район, дайка	0,39	1 5,5	38,4	4,8	25,4	4,6	1,2	5,0	0,7	2,6	1,1	0,8	10
		существенно карбонатого состава				İ		•					İ		
9	Циркоп	«Мир», Мало-Ботуобинский район, кимберлит	< 0.003	-	i —		_					_		_	<u> </u>
1 0	»	«325 лет Якутии», Верхне-Мунский район, ким-	<0,003	_								_			_
		берлит							1			· '			
11	»	«Дружба», Средне-Оленекский район, кимберлит	<0.003				_	-			-			-	\ _
1 2	»	Куонанский район, кимберлит	0,003					-		-	-	38,8	26,6	34,6	52, 2
1 3	Перовскит	«Поисковая», Верхне-Мунский район, кимберлит	1 ,92	23,3	41,7	7,6	19,5	2,8		4,6		1,5	_		4,5
1 4	»	«Альфа», Куонапский район, пикритовый пор-	1 ,32	21,3	41,0	5,3	18,9	4,5	—	7,3	-	1,7	_		5,3
		фирит (?)				! !		l	ŀ						
1 5	Пирохлор	Куонанский район, эксплозивная карбонатито-	1,20	27,8	55,9	4,8	9,4	0,8		0,7	-		_		0,5
4.0		вая брекчия		40.0					١		ŀ				1
16	Монацит	То же		43,3	46,7		6,8	0,6	U,1] —	-		
17	ļ »	(» »		41,1	49,6	[2, 4]	6,9	l —	1 —	I —	j —] —	ı —	l	

^{*} Состав ТR в №№ 1; 2; 4—8; 16 изучен в лаборатории рентгено-спектрального анализа Института геохимии и аналитической химни АН СССР (Ю. А. Балашов), в №№ 3; 17 в лаборатории рентгено-спектрального анализа Института минералогии, геохимии и присталлохимии редкех элементов (Е. В. Вастлеев), в №№ 12—15 в лаборатории химического анализа того же института (хроматографический метод, А. А. Манухова\ Седержания индивидуальных лантановдов даны в процентах от ΣLn, содержания интрия — в процентах от ΣLn + Y.

Данные о содержании и составе TR в изученных минералах представлены в табл. 1. Расшифровка состава TR производилась рентгеноспектральным, частично хроматографическим методами из предварительно выделенных осадков окислов TR или непосредственно в минералах (монацит). Анализ полученных данных позволяет отметить следующее.

- 1. Для апатита из всех рассматриваемых образований характерно довольно высокое (0.3-1.2%) содержание суммы окислов TR, в основном представленных цериевой группой. Некоторое увеличие содержаний TR_2O_3 с парадлельным возрастанием TR_{ce} / TR_{Y} -отношений, намечающееся для апатита из кимберлитов северных районов провинции, согласуется с повышением щелочности этих пород в направлении с юга на север (8 , 9). При общей близости состава TR в изученных образцах апатит из кимберлитов и сопряженных с ними даек существенно карбонатного состава несколько отличается от апатита из эксплозивных карбонатитовых брекчий более низким относительным содержанием элементов цериевой группы.
- 2. Циркон из всех изученных проявлений кимберлитов характеризуется чрезвычайно низким содержанием TR_2O_3 ($\leqslant 0.003\%$). Р. А. Некрасова и В. В. Гамянина (¹) приводят данные, близкие к нашим определениям ($\leqslant 0.0002-0.006\%$). Таким образом, представляется возможным выделить специфическую кимберлитовую разновидность циркона, которая отличается от его разновидностей из других образований внешней формой и содержанием элементов-примесей. В составе TR кимберлитового циркона резко преобладает иттрий и тяжелые лантаноиды.
- 3. Разновидности перовскита из кимберлитов и пикритовых порфиритов двух различных районов провинции близки между собой как по содержанию, так и по составу ТR. В спектре TR резко преобладает цериевая группа.
- 4. Среди изученных минералов максимальным относительным содержанием цериевых земель характеризуется монацит. За ним в порядке последовательного относительного обогащения иттрием и тяжелыми лантаноидами следуют пирохлор, перовскит, апатит и циркон. Эти особенности составов TR в различных минералах хорошо увязываются с особенностями их состава и структуры (10, 11).

Как следует из полученных данных (прежде всего из результатов исследования апатита), формирование кимберлитовых и карбонатных пород различных районов Якутской алмазоносной провинции, протягивающейся на многие сотни километров от бассейна р. Вилюй на юге до бассейнов рек Оленек и Анабар на севере, происходило в сравнительно близких геохимических условиях. На эти условия почти не повлияли различия в составе и возрасте вмещающих осадочно-метаморфических толщ. Данные такого рода свидетельствуют в пользу подкорового происхождения значительной массы ТR рассматриваемых нород и указывают на вероятное участие в их формировании потоков глубинных трансмагматических растворов (12).

Полученные результаты представляют значительный интерес для обсуждения проблемы взаимоотношений между кимберлитами и редкометальными карбонатитами. Эта проблема будет рассмотрена авторами в отдельном сообщении.

Институт минералогии, геохимии и кристаллохимии редких элементов

Поступило 29 X 1970

Институт геохимии и аналитической химии им. В. И. Вернадского Академии наук СССР Москва

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. А. Некрасова, В. В. Гамянина, ДАН, 182, № 2 (1968). ² В. В. Ковальский, К. Н. Никишов, О. С. Егоров, Кимберлитовые и карбонатитовые образования восточного и юго-восточного склонов Анабарской антеклизы, «Наука», 1969. ³ А. М. Портнов, Б. С. Горобец, ДАН, 184, № 1 (1969). ⁴ Е. В. Францессон, Петрология кимберлитов, 1968. ⁵ А. П. Бобриевич и др., Петрография и минералогия кимберлитовых пород Якутии, 1964. ⁶ В. А. Милашев, Уч. зап. н.-и. инст. геол. Арктики, регион. геология, в. 13 (1968). ⁷ В. К. Маршинцев, Г. Д. Балакшин, ДАН, 188, № 3 (1969). ⁸ И. П. Илупин, В. Ф. Кривонос, Изв. высш. учебн. завед., геология и разведка, № 8 (1968). ⁹ В. А. Благулькина, Советская геология, № 7 (1969). ¹⁰ Е. И. Семенов, Геохимия, № 5 (1958). ¹¹ А. П. Хомяков, Геохимия, № 2 (1963). ¹² Д. С. Коржинский, В кн. Проблемы кристаллохимии минералов и эндогенного минералообразования, «Наука», 1967.