УДК 543.51+547.562+621.039.85

ХИМИЯ

И. С. ИСАЕВ, В. Н. ДОМРАЧЕВ, М. И. ГОРФИНКЕЛЬ, член-корреспондент АН СССР В. А. КОПТЮГ

О РАСПАДЕ ФЕНОЛА-1-С13 ПРИ ЭЛЕКТРОННОМ УДАРЕ

Использование метки С¹³ стало за последние годы весьма распространенным методом исследования масс-спектрометрических реакций распада органических соединений, а полученные в ряде таких исследований неожиданные результаты указывают на необходимость более осторожного, чем это имело место до сих пор. отношения к бытующим в органической массспектрометрии умозрительным построениям. Однако существует и второй аспект в изучении масс-спектров соединений, меченных углеролом-13, который также заслуживает серьезного внимания. Речь идет о выявлении процессов «селективного распада» органических соединений при электронном ударе, когда в осколочных ионах сохраняются или отсутствуют атомы углерода определенных положений исходной молекулы*. Накопление сведений о таких процессах позволило бы шире использовать масс-спектрометрический метод для определения положения метки в меченых молекулах при изучении молекулярных перегруппировок методом меченых атомов. Пролоджая работы в этом направлении, мы решили изучить масс-спектрометрический распад некоторых меченных С13 производных бензола и в первую очередь — фенола-1-С¹³.

Выбор в качестве объекта исследования фенола-1- C^{13} обусловлен следующими причинами. Можно было предполагать, что образование ионов $(M-CO)^+$, дающих достаточно интенсивную линию в масс-спектре, связано преимущественно с потерей атома $C_{(1)}$. Если это действительно так, то оказалось бы возможным определять содержание метки в положении 1 фенола-x- C^{13} по его масс-спектру. Такая возможность тем более интересна, что практически от любого меченого в ядре монозамещенного бензола можно без особого труда перейти к фенолу. Кроме того, фенол-x- C^{13} легко перевести в n-бензохинон-x- C^{13} , по масс-спектру которого можно пытаться оценить суммарное содержание метки в положениях 2 и 3 по аналогии с тем, как это было сделано в случае нафтохинона-1,4 (1).

Фенол-1- C^{13} был синтезирован по приведенной ниже схеме и очищен методом препаративной г.ж.х. Избыточное над природным содержание C^{13} в полученном образце фенола-1- C^{13} составляло $48.1\,\%$.

Масс-спектры фенола и фенола-1- C^{13} были записаны на приборе МХ1303 при энергии ионизирующих электронов 70 эв и температуре 200° в системе напуска и ионизационной камере. Ниже представлены интенсивности линий $(I,\ \%)$ в масс-спектре немеченого фенола, выраженные в процентах к основной линии (M^+) , а также величины удержания метки $(P,\ \%)$ соответствующими ионами в масс-спектре фенола-1- C^{13} .

m/e	66	65	40	39	38
Состав	C_5H_6 (M—CO)	C ₅ H ₅ (M—CHO)	C_3H_4 (M— C_3H_2O)	C ₃ H ₃ (MC ₃ H ₃ O)	$C_3H (M-C_3H_4O)$
ионов					
I, %	55	31	13	30	11
P,%	2	11	12	11	17

^{*} Если ионы с данным элементным составом образуются в результате протекания нескольких сравнимых по вкладам процессов, то достаточно, чтобы «селективным» был хотя бы один из них.

Элементный состав ионам с m/e 66 и 65 приписан на основании данных, полученных Бейноном с сотрудниками (2) при изучении масс-спектра фенола при высоком разрешении. Из приведенных данных следует, что молекулярные ионы фенола, распадающиеся с элиминированием СО, действительно практически полностью (на 98%) теряют атом углерода $C_{(1)}$ и это обстоятельство может быть использовано для определения содержания фенола-1- C^{13} в смеси «изотопных изомеров» по масс-спектру смеси.

Фенол-1-C¹³ был окислен далее в *n*-бензохинон-1-C¹³. При записи массспектров этого соединения мы столкнулись с частичным и невоспроизволимым (по степени превращения) восстановлением его в масс-спектрометре до гидрохинона (ср. (3)), которое затрудняло проведение измерений величин удержания метки ионами $(M-C_2H_2)^+$. Это препятствие удалось преодолеть путем длительного напуска в масс-спектрометр паров ароматических перфторированных соединений перед записью масс-спектра п-бензохинона-1- C^{13} . В результате интенсивность линии с m/e 111 (молекулярные ионы гидрохинона- C^{13}) в масс-спектре n-бензохинона-1- C^{13} уменьшилась до 4% от интенсивности линии с m/e 109 (молекулярные иопы n-бензохинона- C^{13}). Величина удержания метки понами (М — C_2H_2) + при этом оказалась равной 97% *, что означает практически полное сохранение в этих ионах атомов $C_{(1)}$ и $C_{(4)}$. Следовательно, по величине удержания метки ионами $(M-C_2H_2)^+$ можно оценить суммарное содержание в смеси «изостопных изомеров» n-бензохинонов с меткой C^{13} в положениях 2 и 3. Зная содержание соединений с меткой в положениях 1, 2 и 3, по разности можно определить содержание соединений с меткой в положении 4.

Фенол-1- C^{13} . Кипячением 9,0 г 1,5-дибромпентана с раствором 6,0 г цианистого- C^{13} калия (приготовлен по методике (4) из $BaC^{13}O_3$ с обогащением 53%) в 20 мл воды и 10 мл спирта в течение 11 час. получили динитрил пимелиновой-1,7- C_2^{13} кислоты (ср. (5)). Динитрил гидролизовали до кислоты кипячением с 25 мл конц. HCl в течение 4 час. Выход пимелиновой-1,7- C_2^{13} кислоты 5,40 г (90%, считая на цианид калия), т. пл. $102,0-103,0^{\circ}$. Смесь 5,0 г кислоты и 0,3 г $BaC^{13}O_3$ нагревали 6 час. при $305-310^{\circ}$ в колбе Вюрца, непрерывно отгоняя образующийся кетон и улавливая выделяющийся $C^{13}O_2$ баритовой водой. Выход циклогексанона-1- C^{13} 2,6 г (84%), n_D^{20} 1,4470. Для дегидрирования циклогексанона-1- C^{13} его 10% раствор в петролейном эфире прибавляли по каплям в кварцевой реактор, нагретый до 400° и заполненный активированным углем, обработанным солями меди, хрома, никеля и натрия (6). Катализат растворяли в эфире, промывали щелочью, подкисляли и экстракцией эфиром выделили 1,87 г (70%) фенола-1- C^{13} , который был очищен далее методом микропрепаративной г.ж.х. на приборе ЛХМ-7А в токе гелия при 150° . Стационарной фа-

зой служил ПЭГА, нанесенный на хромосорб W (соотношение 1:5). Бензохинон-1-С¹³. Окислением фенола-1-С¹³ нитрозодисульфонатом калия по методике (⁷) был получен бензохинон-1-С¹³, очищенный методом г.ж.х., т. пл. 113—114° С.

Новосибирский институт органической химии Сибирского отделения Академии наук СССР Поступило 22 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Коптюг, И. С. Исаев, М. И. Горфинкель, Изв. АН СССР, сер. хим., 1970, 845. ² Л. Н. Веупоп, Mass Spectrometry and its Applications to Organic Chemistry, London, 1960, p. 352. ³ В. С. Das, М. Lounasmaa et al., Biochem. Biophys. Res. Commun., 21, 318 (1965); R. T. Aplin, W. T. Pike, Chem. Ind., 1966, 2009. ⁴ В. И. Майминд, Б. В. Токарев и др., ЖОХ, 26, 1962 (1956). ⁵ А. Мэррей, Д. Л. Уильямс, Синтезы органических соединений с изотопами углерода, 2, ИЛ, 1962, стр. 249. ⁶ Brit. Pat. 970835; Chem. Abstr., 61, 13240 (1964). ⁷ H.-J. Теувег, W. Rau, Chem. Ber., 86, 1042 (1953).

^{*} Интенсивность линии $(M-C_2H_2)^+$ в масс-спектре n-бензохинона составляет $40\,\%$ от интенсивности основной линии (M^+) .