УДК 548.1.02

# *КРИСТАЛЛОГРАФИЯ*

## т. А. Курова, В. Б. Александров

# КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА LaTaO<sub>4</sub>

#### (Представлено академиком Н. В. Беловым 14 V 1971)

При рентгенографическом исследовании ниобатов и танталатов редкоземельных элементов методом порошка было установлено, что ортотанталаты La, Ce и Pr резко отличаются в структурном отношении от большинства других соединений TRNbO<sub>4</sub> и TRTaO<sub>4</sub>, принадлежащих к структурному типу моноклинного фергюсонита (<sup>1-3</sup>). Определить сингонию и параметры решетки трех указанных танталатов до сих пор не удавалось.

При неудачных попытках выращивания монокристаллов нами были получены мелкозернистые агрегаты, состоящие из полисинтетических двойников с индивидами толщиной менее 0,01 мм. Из таких двойниковых зерен удалось приготовить шарики диаметром 0,15 мм, которые обнаруживали на лауэграммах четкую ромбическую дифракционную картину. Дальнейшее исследование в камерах РКОП и КФОР показало, что образцы состоят из двух систем индивидов, относящихся к моноклинной сингонии. По систематическим погасаниям рефлексов на кфорограммах однозначно определена пространственная группа  $P2_1/c$ . Параметры решетки, уточненные на монокристальном дифрактометре по пинакоидальным рефлексам высоких порядков ( $\theta = 60-80^\circ$ , излучение Мо- $K_{z, \rho}$ ), следующие:  $a = 7,651 \pm 0,002$ ;  $z = 5,577 \pm 0,001$ ,  $c = 7,823 \pm 0,002$  Å;  $\beta = 101^\circ 31' \pm \pm 3'$ ; Z = 4.

Рентгеновское изучение методом Лауэ в сочетании с кристаллооптическим исследованием показало, что двойниковой плоскостью (совпадающей с двойниковым швом) является (100). Двойники обладают симметричным угасанием,  $c: N_g = 17^{\circ}$ . Двупреломление в плоскости (010) составляет 0,027, а в разрезах, близких к (100), — менее 0,009. Оптический знак отрицательный.

На монокристальном дифрактометре были измерены интенсивности 356 рефлексов типа h0l и 271 — типа Okl, среди которых ненулевыми (превышающими фон более чем вдвое) оказались соответственно 335 и 228. Расчет установочных углов был проведен для обеих систем индивидов двойника. В тех случаях, когда углы  $\theta$  и  $\omega$  для двух различных рефлексов, принадлежащих разным системам, оказывались близкими, измерялась их суммарная интенсивность при расширенной щели детектора. Измерения заведомо не накладывающихся эквивалентных отражений для одной и другой системы позволили оценить отношение эффективных объемов инди $n = J_{hbl}^{II} / J_{hbl}^{I}$ видов каждой из систем Вслед за этим, измерив суммарные интенсивности  $J_{h_1k_1l_1}^{I} + J_{h_2k_2l_2}^{II} = a$ ,  $J_{h_2k_2l_2}^{I} + J_{h_1k_1l_1}^{II} = b$  и приняв, что отношение эффективных объемов не зависит от ориентации образца по отношению к первичному и дифрагированному пучку, можно было найти интенсивности рефлексов от индивидов одной системы  $\tilde{J}^{h}_{k,l} = (a - nb) /$ /  $(1-n^2)$  и  $J_{h_2k_2l}^{I} = (b-na) / (1-n^2)$ . Измеренные значения интенсивностей умножались на абсорбционный фактор для сферического образца  $(\mu R = 5,5 \text{ см}^{-1})$  без учета его двойникового строения.

Анализ расположения и относительных высот наиболее мощных пиков на проекциях Патерсона P<sub>(uw)</sub> и P<sub>(vw)</sub> позволил однозначно локализовать атомы La и Ta, занимающие две 4-кратные общие позиции. Координаты большей части атомов кислорода были приближенно найдены на проекциях электронной плотности, построенных с учетом известных координат тяже-





мов и тепловые копстанты В, найденные в двух проекциях, усреднялись; их разброс не превышает стандартных отклонений. Факторы расходимости составляют 0,09 для рефлексов типа h0l и 0,12 — для 0kl (sin  $\theta$  /  $\lambda \leqslant 1,39$  Å<sup>-1</sup>). Точность определения межатомных расстояний, приведенных в табл. 2, составляет для Me — O ~ 0,03, а для 0-0~0,05 Å

(рассчитана по стандартным отклопениям координат атомов кислорода).

Атомы Та располагаются вблизи центров тяжести слегка искаженных октаэдров (рис. 1); среднее рас-стояние Та — О равно 2,00 Å. Соединяясь общими вершинами, эти октаэдры образуют бесконечный в двух измерениях гофрированный слой, параллельный

После первого цикла на разностных проекциях выявились максимумы, соответствующие недостающим атомам кислорода. Приведенные в табл. 1 тепловые константы В для всех атомов и координаты La и Ta получены методом наименьших квадратов (м.п.к.), а координаты атомов кислорода из разностного синтеза последнего приближения, так как относительные вклады этих атомов в структурные амплитуды очень малы и м.н.к. при уточнении их координат становится менее эффективным, чем метод разностных рядов. Координаты z всех ато-

лва цикла уточнения найденных координат и инпивидуальных изотропных тепловых факторов методом наименьших квадратов, чередующихся с построением разностных синтезов р<sub>экси</sub> — р<sub>La, та</sub> для обеих проекций.

Таблица 1

Координаты базисных атомов и пидивидуальные изотропные тепловые константы B в структуре LaTaO4 (в скобках приведены стандартные отклонения)

| Атомы                                        | x/a                                                                                                          | 5/b                                                                                              | z/c                                                                                              | В                                                                                          |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| La<br>Ta<br>0 (1)<br>0 (2)<br>0 (3)<br>0 (4) | $\begin{array}{c} 0,3448\ (3)\\ 0,1683\ (2)\\ 0,175\ (5)\\ 0,052\ (3)\\ 0,381\ (3)\\ 0,334\ (6) \end{array}$ | $\begin{array}{c} 0,7723(5)\\ 0,2658(3)\\ 0,157(6)\\ 0,589(6)\\ 0,485(7)\\ 0,009(8) \end{array}$ | $\begin{array}{c} 0,0964(4)\\ 0,3007(3)\\ 0,052(5)\\ 0,207(5)\\ 0,335(5)\\ 0,354(9) \end{array}$ | $\left \begin{array}{c}0,49(3)\\0,35(2)\\0,6(5)\\0,5(3)\\0,5(3)\\1,2(6)\end{array}\right $ |

(100), причем каждый октаэдр имеет по четыре общих вершины с четырьмя соседними октаэдрами (рис. 2). Вдоль [001] тяпутся ряды октаэдров, связанных между собой плоскостью с; период решетки вдоль этого направления приблизительно соответствует двум объемным диагоналям октаэдров, а расстояния между соседними атомами Та равны 3,92 Å (угол Ta - O(1) - Ta равен 150°13′). Вдоль [010] октаэдры нанизаны на ось  $2_{I}$ , проходящую через цептры их ребер, слегка наклоненных по отношению к этой оси. Эти октаздры образуют зигзагообразные ряды (Та — Та 3,77 Å, угол Ta — O (2) — Ta paвeн  $140^{\circ}06'$ ), причем период b соответствует двум ребрам октаэдров.

Октаэдрические слои трансляционно идентичны и разделены сходными с ними по конфигурации слоями из La-восьмивершипников, имеющих неправильную форму. Их можно рассматривать как томсоновские кубы, четырехугольные грани которых не вполие параллельны одна другой. Восемь расстояний La — О лежат в пределах 2,40—2,84 Å (среднее 2,54 Å); следующий, девятый атом кислорода удален от La на 3,48 Å. La-полиэдры



Рис. 2. Проекция структуры LaTaO<sub>4</sub> па (001)

в отличие от октаэдров объединены в слои общими ребрами, что деласт слои более компактными и, несмотря на значительно болыше размеры La-восьмивершинников, Та- и La-слои оказываются когерентными (что диктуется стехнометрией соединения). Каждый из атомов O(1) и O(2)связан с двумя Та и одним La, а O(3) и O(4) — с одним Та и тремя La; формальный баланс валентностей в структуре (без учета межатомных

Таблица 2

расстояний п силы связей) можно считать почти идеальным — отклонения валентных усилий от валентности кислорода составляют 2%.

Описанные слои структуры LaTaO4 параллельны двойниковому шву полисинтетических двойников этого соединения. Поэтому для образования такого пвойника в процессе кристаллизации достаточно ошибки в налослоев. Такая жении ошибка вызовет лишь пезначительные напряМежатомные расстояния и характерные валентные углы в структуре LaTaO<sub>4</sub>

| Расстояния Ме                                                                                                                                                                                                                                     | -0, Å                                                                                                        | Длины ребер Та-октаздра (Å), и оп<br>рающиеся на них углы О — Та — О                                                                                                                                                                                        |                                                                                              |                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} Ta &0 & (1) \\ &0 & (1') \\ & -0 & (2) \\ & -0 & (2') \\ & -0 & (3) \\ & -0 & (4) \\ La & -0 & (1) \\ & -0 & (2'') \\ & -0 & (3'') \\ & -0 & (3'') \\ & -0 & (3''') \\ & -0 & (4') \\ & -0 & (4'') \\ & -0 & (4'') \end{array}$ | 2,05<br>2,00<br>2,07<br>1,94<br>2,01<br>1,91<br>2,49<br>2,74<br>2,43<br>2,52<br>2,40<br>2,47<br>2,41<br>2,84 | $\begin{array}{c} 0 (1) & -0 (2) \\ 0 (1) & -0 (2') \\ 0 (1) & -0 (3) \\ 0 (1) & -0 (4) \\ 0 (1') & -0 (2) \\ 0 (1') & -0 (2') \\ 0 (1') & -0 (3) \\ 0 (1') & -0 (4) \\ 0 (2) & -0 (2') \\ 0 (2) & -0 (3) \\ 0 (2') & -0 (4) \\ 0 (3) & -0 (4) \end{array}$ | 2,94<br>2,83<br>3,06<br>2,61<br>3,00<br>2,78<br>2,66<br>2,84<br>3,01<br>2,58<br>2,93<br>2,69 | $\begin{array}{c} 90^{\circ}44'\\ 90^{\circ}16'\\ 97^{\circ}43'\\ 82^{\circ}30'\\ 94^{\circ}59'\\ 89^{\circ}29'\\ 82^{\circ}59'\\ 91^{\circ}50'\\ 97^{\circ}01'\\ 78^{\circ}26'\\ 98^{\circ}50'\\ 86^{\circ}44'\\ \end{array}$ |

жения в пограничном слое La-полиэдров, чем и можно объяснить склонность кристаллов LaTaO<sub>4</sub> к полисинтетическому двойникованию. Можно предположить также, что двойпики образуются в твердом состоянии при деформационном переходе из какой-либо высокотемпературной модификации (вероятно, ромбической) в низкотемпературпую (моноклинную), причем сдвиговые деформации вдоль плоскости слоев в соседних индивидах антипараллельны. Слоистый мотив структуры LaTaO<sub>4</sub> согласуется с оптически отрицательным характером этого соединения — двупреломление в разрезах, параллельных слоям, значительно ниже, чем в тех, которые им перпендикулярны.

Ортотанталат лаптана по своей структуре близок к соединению  $NaNbO_2F_2$  (\*). Несмотря на то, что роль атомов O (3) и O (4) в этом соединении играют атомы F, расстояния Nb - O(F) весьма близки к найденным нами расстояниям Ta – O. Одинаковым в обеих структурах является и строение октаэдрических слоев. Наиболее значительны отличия в характере координационного окружения La и Na.

От изученных ранее ниобатов и танталатов редкоземельных элементов LaTaO<sub>4</sub> отличается значительно большей равномерностью расстояний Ta — O в октаэдрах, хотя средние расстояния во всех структурах близки. По-видимому, степень неравномерности расстояний Ta (Nb) — O связана, главным образом, с характером конденсации октаэдров в различных структурах. Так, для эшинита Ce (Nb, Ti)<sub>2</sub>O<sub>6</sub> (<sup>5</sup>), в структуре которого каждый октаэдр имеет по одному общему ребру с другим, расстояния Nb — O колеблются от 1,90 до 2,14 Å (среднее 2,03 Å), а в эвксените Y (Nb, Ti)<sub>2</sub>O<sub>6</sub> (<sup>6</sup>), где обобществлены по два ребра каждого октаэдра, от 1,84 до 2,30 Å (среднее 2,02 Å). Вероятно, смещение атомов Ta и Nb из центров октаэдров, характерное для ниобатов и танталатов, определяется не столько природой самих этих атомов, сколько их взаимным отталкиванием при конденсации координационных полиэдров.

Структура LaTaO<sub>4</sub> по своему мотиву отличается от структур фергюсонитового типа (<sup>7</sup>). Поэтому можно ожидать лишь незначительной изоморфной емкости этого соединения в отношении Nb и редкоземельных элементов от Nd до Lu. C другой стороны, можно предполагать, что в системе LaTaO<sub>4</sub>—NaNbO<sub>2</sub>F<sub>2</sub> существует значительная область твердых растворов.

Институт минералогии, геохимии и кристаллохимии редких элементов Москва Поступило 7 V 1971

### ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> С. Keller, Zs. anorg. u. allgem. Chem., **318**, H. 1-2 (1962). <sup>2</sup> Н. Р. Rooksby, E. A. D. White, Acta Crystallogr., **16**, 888 (1963). <sup>3</sup> V. S. Stubican, J. Am. Ceram. Soc., **47**, № 2 (1964). <sup>4</sup> S. Anderson, J. Galy, Acta Crystallogr., **B25**, **5** (1969). <sup>5</sup> В. Б. Александров, ДАН, **142**, № 1 (1962). <sup>6</sup> В. Б. Александров, В сборн. Экспериментальн. исследов. в области минералогии и геохимии редких элементов, «Наука», 1967. <sup>7</sup> А. И. Комков, Кристаллография, **4**, в. 6 (1959).