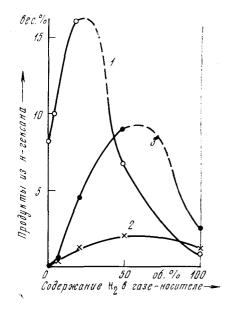
УДК 547.216 + 547.526 + 541.128.3 + 542.952.1


ХИМИЯ

3. ПААЛ (Z. PAÁL), П. ТЕТЕНИ (P. TÉTÉNYI)

ВЛИЯНИЕ ВОДОРОДА В СМЕСЯХ С ГЕЛИЕМ НА КАТАЛИТИЧЕСКИЕ ПРЕВРАЩЕНИЯ *н*-ГЕКСАНА И 2-МЕТИЛПЕНТАНА В ПРИСУТСТВИИ ПЛАТИНОВОЙ ЧЕРНИ

(Представлено академиком Б. А. Казанским 2 VIII 1971)

Известно, что на разных платиновых катализаторах (Pt/C (1-4), платиновые пленки (5), платина, нанесенная на окиси (6)) происходят различные превращения парафиновых углеводородов с образованием ароматических углеводородов, циклопентанов, изомерных парафинов, а также продуктов крекинга. В предыдущих сообщениях (7, 8) было показано, что в присутствии платиновой черни, в атмосфере гелия н-гексан ароматизи-

руется через промежуточное образование *н*-гексенов. Однако в присутствии водорода преобладает образование изомерных парафинов и метилциклопентана, а степень ароматизации

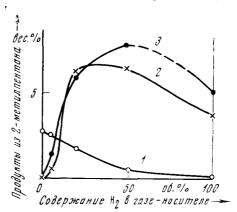


Рис. 1

Рис. 2

Рис. 1. Образование различных углеводородов: бензола (1), металциклопентана (2), изомерных гексапов (3) из n-гексана в зависимости от концентрации водорода в газе-носителе. Условия: 360° C, катализатор 0.4 г Pt, скорость газа-носителя 60 мл/мин

Рис. 2. Образование различных углеводородов из 2-метилпентана в зависимости от концентрации водорода в газе-носителе. Условия и обозначения те же, что и на рис. 1

понижается (⁸). Высказано предположение, что в присутствии водорода изомеризация и С₅-дегидроциклизация *н*-гексана являются альтернативными реакционными путями, успешно конкурирующими с ароматизацией.

Для выяснения влияния водорода изучалось поведение *н*-гексана в токе смесей гелия и водорода в различных соотношениях. Опыты проводились, как описано ранее (8). Мы пользовались готовыми смесями гелия и водорода, содержащими (по данным газо-жидкостной хроматографии) 5,25; 20,4; 51,6 об. % Н₂. Результаты представлены на рис. 1. Глубина превращения *н*-гексана в бензол при добавлении водорода к гелию сначала увеличивается, а затем, пройдя через максимум (при концентрации водорода

в смеси $\sim 20\%$), уменьшается, причем при больших концентрациях водорода степень превращения становится меньше, чем в токе чистого гелия. Изогексаны и метилциклопентан появлялись в катализатах даже при небольших концентрациях водорода. Содержание этих углеводородов в катализате также проходило через максимум, но при концентрации водорода в газовой смеси $\sim 50\%$, т. е. в условиях, в которых степень ароматизации сильно понижалась. Эти результаты показывают, что влияние водорода проявляется уже при наименьших применявшихся концентрациях, причем по мере роста его парциального давления этот эффект становится более и более выраженным.

Ранее (8) установлено, что в атмосфере гелия ароматизация *н*-гексана на Рt-черни происходит практически без участия C₅-дегидроциклизации, которая, однако, в присутствии водорода в принципе может быть промежуточной стадией при ароматизации. Чтобы выяснить роль этой реакции, проводили опыты с 2-метилпентаном, из которого, по данным (4), образуется больше метилциклопентана, чем из *н*-гексана. В опытах с 2-метилпентаном зависимость выхода изомерных гексанов и метилциклопентана от содержания водорода в газовой смеси имела в общем аналогичный характер. Количество метилциклопентана в катализатах было примерно в 3 раза больше, чем в опытах с *н*-гексаном. Однако по мере повышения концентрации водорода в газовой смеси, количество бензола уменьшалось.

Так как степень ароматизации 2-метилпентана понижалась монотонно с ростом концентрации водорода в газе-посителе, а метилциклопентана при этом получалось больше, чем в *н*-гексана кажется певероятным, чтобы повышение выхода бензола из *н*-гексана при малых добавках водорода к гелию было обусловлено возможностью ароматизации через стадию С5-дегидроциклизации. Следует отметить, что ароматизация 2-метилпентана в отсутствие водорода, т. е. при условии отсутствия С5-дегидроциклизации, указывает на возможность перестройки углеродного скелета и другим путем (6), отличающимся от наблюдавшегося ранее механизма, связанного с образованием метилциклопентана (8).

Увеличение ароматизации *н*-гексана в присутствии гелия с небольшими добавками водорода можно объяснить, используя данные табл. 1. Платиновый катализатор, как правило, регенерировался обработкой воздухом, а потом водородом (⁹). Известно, что значительное количество водорода задерживается поверхностью платины (¹⁰). Первый импульс углеводорода попадает на поверхность, покрытую водородом, но в ходе введения последовательных импульсов этот слой водорода сменяется слоем, состоящим из углеродистых образований. Поэтому, катализатор в токе гелия сильно дезактивируется (табл. 1).

При рассмотрении табл. 1 видно, что присутствие водорода в газе-носителе замедляет дезактивацию катализатора, очевидно, потому, что он может удалять с поверхности «необратимо абсорбированные» образования (11), являющиеся предшественниками углистых слоев на металле. Возрастание степени ароматизации объясняется замедлением дезактивации катализатора в присутствии водорода. Селективность катализатора по изомеризации — С5-дегидроциклизации монотонно возрастает по мере увеличения содержания водорода в газе-носителе. Наблюдавшаяся в чистом водороде при дезактивации катализатора конверсия в бензол уменьшается быстрее, чем превращение в изогексаны и метилциклопентан, что заметно и при малых содержаниях водорода. Этим подтверждается сделанный ранее вывод (8) о независимости ароматизации и изомеризации — С5-дегидроциклизации, причем преобладающим направлением реакции по мере роста парциального давления водорода постепенно становится последнее.

Либерман (12) предложил общий механизм для C_5 -дегидроциклизации и расщепления пятичленного цикла в присутствии Pt/C. Очень вероятно, что и в этом случае водород необходим для образования аналогичных промежуточных поверхностных предшественников C_5 -дегидроциклизации.

Изменение степени изомеризации, С₅-дегидроциклизации и ароматизации **н**-гексана по мере дезактивации катализатора
Величина импульса 3 µл н-гексана; 360° С; катализатор; 0,4 гРt; газ-носитель — смесь Не с Н₂ или чистые газы Мера селективности: (ИГ + МЦП)/бензол

Содержание Н ₂ в газе-носителе, %	Продукт реанции	Содержание продукта реакции в катализате, вес. %		
		на свежем катализаторе (a)	на дезактивированном катализаторе * (б)	Остаточная акт и вность б/а
0	Бензол	8,14	0,76	0,11
5	Изомерные гексаны (ИГ) Метилциклопентан (МЦП) Бензол Селективность	0,32 0,26 1 0,0 0,06	0,31 0,17 2,65 0,18	0,97 0,65 0,26
20	ИГ МЦП Бензол Селективность	4,4 1,1 16,0 0,34	3,0 0,85 9,0 0,43	$0,68 \\ 0,78 \\ 0,56 \\ -$
50	ИГ МЦП Бензол Селективность	9,0 1,9 6,7 0,61	6,8 1,6 5,7 0,68	0,75 0,84 0,85
100	ИГ МЦП Бензол Селективность	2,5 1,1 0,7 5,2	2,5 1,0 0,5 7,0	1,0 0,9 0,7

^{*} После пропускания 10.3 ил углеводорода,

Следует отметить, что водород при этом действует как астехиометрический компонент (¹³), так как стехиометрическое количество водорода, выделявшееся во время ароматизации, недостаточно для появления С₅-дегидроциклизации и изомеризации. При дальнейшем увеличении концентрации водорода в газовой фазе наблюдается вытеснение всех углеводородов с поверхности, так как водород может расщеплять поверхностные связи С—М, что, в свою очередь, привелет к уменьшению общей степени превращения.

Известно (¹⁴), что водород может адсорбироваться разными путями на поверхности платины. Исследованием разновидностей адсорбированного водорода не только в условиях программированной десорбции (¹⁴), но и при равновесии с газообразным водородом можно выяснить, какой вид поверхностных атомов водорода является активным в упомянутых реакциях.

Институт изотопов Академии наук ВНР Будапешт Поступило 29 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. А. Казанский, А. Л. Либерман и др., ДАН, 95, 281 (1954). ² Б. А. Казанский, А. Л. Либерман и др., ДАН, 95, 77 (1954). ³ А. Л. Либерман, Г. В. Лоза и др., ДАН, 120, 789 (1958). ⁴ Б. А. Казанский, А. Л. Либерман и др., ДАН, 128, 1188 (1959). ⁵ J. R. Anderson, N. R. Avery, J. Catalysis, 5, 446 (1960). ⁶ Y. Barron, G. Maire et al., J. Catalysis, 5, 428 (1966). ⁷ Z. Paal, P. Tétényi, Acta chim. acad. sci. hung., 54, 175 (1967). ⁸ З. Паал, П. Тетени, ДАН, 201, № 4 (1971). ⁹ Z. Paal, P. Tétényi, Acta chim. acad. sci. hung., 53, 193 (1967). ¹⁰ N. G. Taylor, S. J. Thomson, G. Webb, J. Catalysis, 12, 191 (1968). ¹¹ P. Tétényi, L. Babernics, J. Catalysis, 8, 215 (1967). ¹² А. Л. Либерман, Кинетика и катализ, 5, 128 (1964). ¹³ Я. Т. Эйдус, Кинетика и катализ, 11, 422 (1970). ¹⁴ S. Tsuchiya, Y. Amenomiya, R. J. Cvetanovic, J. Catalysis, 19, 245 (1970).