УДК 517.948:621.039

MATEMATHKA

И. А. ФЕЛЬДМАН

ОБ ОДНОМ ИТЕРАЦИОННОМ МЕТОДЕ ДЛЯ УРАВНЕНИЯ ПЕРЕНОСА ЛУЧИСТОЙ ЭНЕРГИИ

(Представлено академиком Н. И. Мусхелишвили 21 Х 1970)

В настоящем сообщении продолжается начатое в (1) исследование уравнения переноса лучистой энергии методами теории уравнений Винера —

Основное внимание уделяется одному итерационному методу, сходимость которого для уравнения переноса с постоянной индикатрисой рассеяния была установлена Е. Хопфом (2), а в случае индикатрисы из $L_2(-1,1)$ — М. В. Масленниковым (3).

В п. 1 формулируются некоторые общие предположения об операторных уравнениях Винера — Хонфа, которые в п. 2 применяются к уравнению переноса для отыскания его дефектных чисел и обоснования итерационного метода.

1. Приведем некоторые обозначения из (1): $L_p(\mathfrak{B})$ $(1 \leqslant p < \infty)$ — банахово пространство сильно измеримых вектор-функций f(t) $(0 \leqslant t < \infty)$ со значениями в банаховом пространстве 🖰 и с нормой

$$||f||_p = \left(\int\limits_0^\infty ||f(t)||^p dt\right)^{1/p} \quad (<\infty);$$

 $M(\mathfrak{B})$ — пространство всех ограниченных сильно измеримых вектор-функций f(t) $(0 \le t < \infty)$; $C_0(\mathfrak{B})$ — подпространство $M(\mathfrak{B})$, состоящее из всех непрерывных вектор-функций, стремящихся к нулю на бесконечности. В дальнейшем через $E(\mathfrak{B})$ обозначается одно из пространств $L_{\mathfrak{p}}(\mathfrak{B})$, $M(\mathfrak{B})$, $C_{\mathfrak{q}}(\mathfrak{B})$ и через $E(\mathfrak{B})$, $L_{\mathfrak{p}}(\mathfrak{B})$, $M(\mathfrak{B})$ и $C_{\mathfrak{q}}(\mathfrak{B})$ — соответствующие пространства вектор-функций f(l) на всей оси.

В пространстве Е(В) рассмотрим оператор Винера — Хопфа

$$(A\varphi)(t) = \int_{0}^{\infty} k(t-s)\varphi(s) ds \quad (0 \le t < \infty), \tag{1}$$

где оператор-функция $k(t) \in \mathcal{L}_i(\mathfrak{S})$, а \mathfrak{S} — замыкание (по операторной норме) множества всех конечномерных операторов в ϑ .

Существенную роль в исследовании оператора (1) играет операторфункция

$$K(\lambda) = \int_{-\infty}^{\infty} k(t) e^{i\lambda t} dt \quad (-\infty < \lambda < \infty)$$
 (2)

— преобразование Фурье ядра $k(t) \ (\equiv \tilde{L}_1(\mathfrak{S}))$. Пусть r — вещественное число. Условимся писать $\varphi(t) \equiv e^{rt} E(\mathfrak{B})$, если $e^{-\tau t} \varphi(t) \in E(\mathfrak{B})$. Множество $e^{\tau t} E(\mathfrak{B})$ является банаховым пространством с нормой $\|\varphi\| = \|e^{-rt}\varphi\|_E$. Аналогично определяется пространство $e^{r|t|}L_1(\mathfrak{S})$. В дальнейшем через h обозначается некоторое фиксированное положительное число.

Если оператор-функция $k(t) \in e^{-h|t|} \widetilde{L}_t(\mathfrak{S})$, то оператор A, определенный равенством (1), ограничен в каждом из пространств $e^{st}E(\mathfrak{B})$ при любом s из промежутка $-h \leqslant s \leqslant h$.

Теорема 1. Пусть $k(t) \equiv e^{-h|t|} \widetilde{L}_1(\mathfrak{S})$, при некотором $s(-h \leq s \leq h)$ последовательность операторов А" сильно сходится к нулю в пространстве $e^{it}E(\mathfrak{B})$ и $\varphi(t) \in e^{ht}E(\mathfrak{B})$ — решение уравнения $A\varphi = \varphi$. Если вектор $\varphi_0(t) \in e^{ht}(\mathfrak{B})$ таков, что $\varphi(t) - \varphi_0(t) \in e^{st}E(\mathfrak{B})$, то последовательность

 $A^n \varphi_0 - \varphi$ сходится к нулю по норме пространства $e^{st} E(\mathfrak{B})$.

Отметим, что векторы $A^{\circ}\phi_{\circ} - \phi_{\circ}$ (n = 1, 2, ...) принадлежат пространству $e^{A}E(\mathfrak{B})$ и сходятся к вектору $\phi - \phi_0$. В качестве вектора $\phi_0(t)$ в теореме 1 можно взять, например, главный член асимптотики решения $\varphi(t)$ или сумму только тех его слагаемых, которые не попадают в пространство $e^{\mathfrak{s} t}E(\mathfrak{D})$ (см. теорему 4 из (1)).

Теорема 1, как и аналогичная теорема о неоднородном уравнении, яв-

ляется следствием следующего общего предложения.

T е о р е м а 2. Пусть банахово пространство E_1 содержится в банаховом пространстве E, B — линейный ограниченный оператор в каждом из пространств E и E_{i} , последовательность B^{n} сильно сходится к нулю в E_{i} и $x \in E$ — решение уравнения x - Bx = f ($f \in E$). Если вектор $x_0 \in E$ raков, что $x-x_0 \in E_1$, то последовательность

$$B^n x_0 + \sum_{j=0}^{n-1} B^{jj} - x \quad (n = 1, 2, ...)$$

сходится к нулю по норме пространства E_1 .

Теорема 2, в свою очередь, легко следует из теоремы 1 статьи (4).

Пусть $k(t) \in e^{-h|t|} \tilde{L}_1(\mathfrak{S})$. Через $\alpha(s)$ $(-h \leqslant s \leqslant h)$ обозначим $\dim \operatorname{Ker}(I-A)$ в пространстве $e^{st}E(\mathfrak{B})$, через $\beta(s) - \dim \operatorname{Coker}(I-A) =$ $= \dim e^{st} E(\mathfrak{B}) / \operatorname{Im}(I - A)$ и через $\varkappa(s)$ — разность $\alpha(s)$ — $\beta(s)$. Числа $\alpha(s)$ и $\beta(s)$ называются дефектными числами оператора I — — A в пространстве $e^{st}E(\mathfrak{B})$, а число $\varkappa(s)$ — и и дексом этого оператора. Функции $\alpha(s)$ и $\varkappa(s)$ не убывают, а функция $\beta(s)$ не возрастает ($-h \leqslant$ $\leqslant s \leqslant h$). При $k(t) \in e^{-h|t|} \mathcal{L}_t(\mathfrak{S})$ оператор-функция, определенная равенством (2), голоморфна в полосе | Im λ | < № и непрерывна вплоть до гра-

 Π емма 1. Пусть $k(t) \in e^{-h|t|}L(\mathfrak{S})$ и все значения оператор-функции $I - K(\lambda)$ на прямых $\operatorname{Im} \lambda = s_i$ $(j = 1, 2; -h \leqslant s_i \leqslant s_i \leqslant h)$ обратимы, Tогда $\varkappa(s_1)-\varkappa(s_2)=m$, где m-сумма алгебраических кратностей *всех характеристических чисел $I - K(\lambda)$ в полосе $s_2 < \operatorname{Im} \lambda < s_1$.

В доказательствах приводимых ниже теорем используется одно простое предложение о спектральном раднусе оператора А. Прежде чем привести его формулировку, отметим, что спектральный радиус r_A оператора A один и тот же в каждом из пространств $E(\mathfrak{B})$.

 Π емма 2. Π усть \mathfrak{B} — гильбертово пространство $k(t) \in \mathcal{L}_1(\mathfrak{S})$.

Тогда для спектрального радиуса оператора А в пространстве Е(В). справедлива следующая оценка:

$$r_A \leq \sup_{-\infty < \lambda < \infty} ||K(\lambda)||.$$

Число $\sup \|K(\lambda)\|$ мажорирует также норму оператора A в пространстве $L_2(\mathfrak{B})$.

2. Уравнение переноса лучистой энергии сводится к операторному уравнению Винера — Хопфа $(I-A)\phi = f$, где A — оператор вида (1) с ядром

$$k\left(t\right) = \begin{cases} -\frac{1}{\cos v} \, e^{t/\cos v} Q_{-}T, & 0 < t < \infty, \\ \frac{1}{\cos v} \, e^{t/\cos v} Q_{+}T, & -\infty < t < 0; \end{cases}$$

^{*} Определения см., например, в (1).

Tеорема 4. Пусть $g_0 < 1$ и число h (0 < h < 1) не является харак-

теристическим для оператор-функции $I-T-\lambda M$.

Тогда существует базис $\varphi_{\mathbb{A}}(t, \omega)$ $(j = 1, 2, ..., n; k = 1, 2, ..., q_j)$ подпространства всех решений уравнения $A\phi = \phi$, принадлежащих $e^{ht}E(\mathfrak{B})$, такой, что последовательность

$$A^m e^{\varphi_{jk}} \psi_{jk}(\omega) - \varphi_{jk}(t, \omega) \quad (m = 1, 2, \ldots)$$
 (3)

сходится к нумю по норме пространства $L_2(\mathfrak{B})$.

Отметим, что последовательность функций (3) сходится к нулю и равномерно на множестве $G=\{\omega\in\Omega,\, t\in[0,\,\infty)\}$, так как норма оператора A в пространстве измеримых и ограниченных на G функций равна g_0 .

Теорема, аналогичная теореме 4, справедлива и в случае g₀ = 1. При этом функции $e^{\gamma_j \cdot \psi_{jk}}(\omega)$ следует заменить функциями $e^{\gamma_j \cdot \psi_{jk}}(\omega) + c_{jk}$ $(j=1, 2, ..., n; k=1, 2, ..., q_i)$ n $t+(1-g_i)^{-1}\cos v+c_0$

а $c_{\mathfrak{R}}$ и $c_{\mathfrak{0}}$ — некоторые константы. Можно положить, $g_1 = 2\pi \mid g(\mu) \mu d\mu$

эти константы равными нулю, но тогда соответствующая последовательность будет сходиться по более слабой норме.

Мы не формулируем здесь предложений о решении неоднородного

уравнения $\phi - A\phi = f$, которые могут быть получены с помощью тео-

ремы 2.

Предложения п. 2 пересекаются с полученными иным методом результатами М. В. Масленникова (3). В (5), в частности, установлена сходимость последовательности (3) (по некоторой другой норме) для случая g(µ) ∈ $\in L_2(-1,1).$

Автор выражает глубокую благодарность И. Ц. Гохбергу за полезные

замечания.

Институт математики с вычислительным центром Академии наук МССР Кишинев

Поступило 10 VII 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. А. Фельдман, Функц. анализ и его прилож. 5, в. 3 (1971). ² Е. Норf, Mathematical Problems of Radiative Equilibrium, Cambridge Tracts, № 31, 1934. ³ М. В. Масленников, Тр. матем. инст. им. В. А. Стеклова, в. 97 (1968). ⁴ И. А. Фельдман, Изв. АН МолдССР, № 4 (1966).