УДК 513.83

MATEMATUKA

м. А. ШТАНЬКО

РЕШЕНИЕ ЗАДАЧИ МЕНГЕРА В КЛАССЕ КОМПАКТОВ

(Представлено академиком II. С. Александровым 28 V 1971)

1. Доказательство универсальности компактов Менгера. К. Менгер построил компакты M_r^n , r < n, лежащие в эгклидовом пространстве E^n , $\dim M_r^n = r$, и предположил, что для любого r-мерного множества $X \subset E^n$ существует томеоморфизм $f \colon X \to M_r^n$ (1). В этой статье задача Менгера решается в классе компактов.

T е о р е м а 1. Для любого компакта K в E^n существует гомеоморфизм

 $f: K \to \tilde{M}_r^n, r = \dim K.$

Доказательство. 1) Согласно аппроксимационной теореме из (7), если $\dim K \leq n-3$, то для любого $\varepsilon>0$ существует гомеоморфизм f_{ε} : $K \to E^n$, $\rho(1, f_{\varepsilon}) < \varepsilon$, такой, что $E^n \setminus f_{\varepsilon}(K)$ обладает свойством 1-ULC. 2) Согласно основной теореме из (5, 6), если $\dim K \leq n-3$ и $E^n \setminus K$ обладает свойством 1-ULC, $n \geq 5$, то $\dim K = \dim K$, где $\dim K$ означает размерность вложения компакта K в E^n (6). В дальнейшем мы будем пользоваться двойственной размерностью вложения K в (6) доказано, что K сели K сели

3) Условие Dem K=r необходимо и достаточно для того, чтобы существовала изотопия E^n , переводящая K в M_r^n , где $r=\dim K$. Это утвержде-

ние доказывается в настоящей статье, см. н. 5.

Итак, если K — компакт в E^n , dim $K = r \le n - 3$, $n \ge 5$, то существует гомеоморфизм $f \colon K \to M_{r^n}$. Случан dim K = n - 2, n - 1, рассмотрены Боте (4). Универсальность кривой Менгера M_t^3 была доказана самим Менгером. В общем случае универсальность M_r^n , $2r + 1 \le n$, была доказана

Лефшецом (²).

2. Построение компактов Менгера. Пусть M^n — правильный n-мерный куб в E^n . Через M^r , $r \le n$, обозначим его r-мерные грани, через $P^r(M^n)$ — объединение замкнутых r-мерных граней. Обозначим $A_0(M^n)$ объединение центров всех (r+1)-граней куба M^n . Центры, лежащие на противоположных (r+1)-гранях каждого куба M^{r+2} , соединим прямолинейными отрезками и объединение таких отрезков но всем (r+2)-граням M^{r+2} куба M^n обозначим $A_1(M^n)$. Последовательно рассмотрим (r+k)-грани M^{r+k} и точки множества $A_{k-2}(M^n)$, лежащие на противоположных (r+k-1)-гранях куба M^{r+k} , соединим прямолинейными отрезками, параллельными соответствующему ребру куба M^{r+k} . Объединение таких отрезков по всем (r+k)-граням куба M^n обозначим $A_{k-1}(M^n)$. По индукции определено множество $M_{n-r-1}(M_n)$, размерность которого равна n-r-1.

Случан r=n и r=-1 вкиючаются в общую схему, при этом $A_{-1}(M^n)=\Lambda$ и $A_n(M^n)=M^n$.

Полиэдр $A_{n-r-1}(M^n)$, однозначно определенный для куба M^n по числу $r, -1 \le r \le n$, можно назвать двойственным (n-r-1)-мерным остовом куба M^n . Очевидно, что $P^r(M^n) \cap A_{n-r-1}(M^n) = \Lambda$.

Для построения компактов M_r^n куб M^n разбивается на 3^n равных правильных куба гиперилоскостями, проведенными перпендикулярно соответствующим ребрам куба M^n . Объединение тех из этих кубов, которые не пересекаются с r-мерным остовом $P^r(M^n)$ куба M^n обозначим $N_{n-r-1}(M^n)$.

Очевидно, что $A_{n-r-1}(M^n) \subset N_{n-r-1}(M^n)$.

- 1°. Построенные 3° куба называются кубами цервого ранга. Объединение тех из них, которые пересекаются с $P^{r}(M^{n})$ обозначим $M_{r,1}^{n}$.
- 2° . С каждым кубом первого ранга, входящим в состав $M_{r,1}^{n}$, проделывается такая же операция; сумму всех выбранных кубов второго ранга обозначим $M_{r,2}^n$, и т. д.
- ∞^0 . Получим убывающую последовательность замкнутых множеств $M^n \supset M_{r,1}^n \supset M_{r,2}^n \supset \dots$

Компакт
$$M_r^n = \bigcap_{k=1}^\infty M_{r,k}^n$$
 является компактом Менгера (см. (1)).

Сумму всех r-мерных граней кубов k-го ранга, входящих в состав $M_{r,k}^n$, обозначим $P_{h^T}(M^n)$, $P_{0^T}(M^n) = P^T(M^n)$; сумму всех двойственных (n-r-1)-мерных остовов кубов k-го ранга, входящих в состав $M^n_{r,k}$, обозначим $A_{n-r-1,\;k}(M^n)$, $A_{n-r-1,\;0}(M^n)=A_{n-r-1}(M^n)$; сумму всех кубов (k+1)-го ранга, не вошедших в состав $M^n_{r,k+1}$, но лежащих в $M^n_{r,k}$, обозначим $N_{n-r-1,h}(M^n)$, $N_{n-r-1,0}(M^n) = N_{n-r-1}(M^n)$. Имеем

$$A_{n-r-1, k}(M^n) \subset N_{n-r-1, k}(M^n), \quad k = 0, 1, 2, \dots$$

 $A_{n-r-1, k}(M^n) \cap M_r^n = \Lambda, \quad k = 0, 1, 2, \dots$

3. Размерность вложения компактов Менгера. Предложение 1. Для компакта Менгера $M_r^n \subset E^n$, dem $M_r^n =$

 $= \dim M_{r}^{n}$.

Доказательство. Очевидно, $\dim M_r{}^n=r$, откуда $\dim M_r{}^n\geqslant r$. Покажем, что при любом $\varepsilon > 0$ существует ε-псевдоизотопия E^n на себя, неподвижная вне $U(M_r^n,\, \epsilon)$, переводящая компакт M_r^n на r-мерный полиэдр $P_{k}^{r}(M^{n})$, где $k=k(\varepsilon)$.

Пусть k — настолько большое число, что $M^n_{r,k}$ состоит из кубов, диаметр которых меньше ε / n. Имеем $U(M_r^n, \varepsilon) \supset M^n_{r,k} \supset M_r^n$, где $k = k(\varepsilon)$. Пусть L^n — некоторый куб, входящий в состав $M^n_{r,k}$. Рассмотрим операции выметания в кубе L^n и в его гранях; центрами выметания являются центры граней (см. $\binom{6}{1}$). Так как центры кубов L^n не принадлежат M_r^n , мы можем вымести часть компакта M_r^n , лежащую в L^n , на ∂L^n . Согласно конструкции множества $N_{n-r-1}(L^n)$, мы можем продолжать выметание по всем граням куба L^n , последовательно уменьшая размерность вплоть до граней размерности r+1 включительно. Выметания согласованы, когда L^r иробегает множество всех кубов, входящих в состав $M^n_{r,k}$.

Так как диаметр каждого куба, входящего в состав $M_{r,k}^n$ меньше ε / n , то суперпозиция выметаний в остовах разбиения $M^n_{r,k}$, взятая в порядке убывания размерностей остовов, дает требуемую ε -исевдоизотопию E^n на себя. Таким образом, dem M_r ⁿ $\leqslant r$.

4. Изотопия компактов $M_r{}^n$ и $\overline{M}_r{}^n$. Через $\overline{M}_r{}^n$ будем обозначать компакт, получающийся точно таким же способом, как и компакт M_{τ}^{n} , но при построении мы отправляемся не от правильного куба M^n , а от произвольного n-параллеленипеда \widetilde{M}^n , и деление гиперилоскостями производим не на равные кубы, а на *п*-параллелепипеды более высокого ранга, максимальный диаметр которых стремится к нулю в процессе построения $\overline{M}_{r,k}^n$ при $k o\infty$, причем деление на параллелепипеды последующего ранга должно быть согласовано с делением на параллелепипеды предыдущего ранга, т. с. гиперплоскести предыдущего деления должны быть гиперплоскостями последующего деления,

$$\overline{M}_r^n = \bigcap_{k=1}^{\infty} \overline{M}_{r,k}^n.$$

Как и выше, определяются множества

$$P_k^r(\overline{M}^n), A_{n-r-1,k}(\overline{M}^n), N_{n-r-1,k}(\overline{M}^n), k = 1, 2, \ldots$$

Предложение 2. Пусть $M_r{}^n \subset E^n$ и $\overline{M}_r{}^n \subset E^n$. Существует изотопия E^n на себя, неподвижная вне некоторого ограниченного открытого

множества V, переводящая компакт $\overline{M}_r{}^n$ на компакт $M_r{}^n$.

Доказательство. Пусть \overline{M}^n —параллелепипед, исходя из которого построен компакт $\overline{M}_r{}^n$, и \overline{M}^{n-1} — некоторая его грань. Рассмотрим прямую l, проходящую через одномерное ребро паралмелепипеда \overline{M}^n , перпендикулярное выбранной грани \overline{M}^{n-4} ; на этой прямой l отметим канторовский компакт $\overline{M}_0{}^1$, который получается, если отбрасывать из указанного ребра внутренности отрезков, покрывающихся образами отбрасываемых центральных параллелепипедов все более высокого ранга при ортогональном проектировании всего пространства E^n на прямую l.

Переведем компакт \overline{M}_0^1 с помощью изотопии прямой l на себя на компакт M_0^1 (как-либо выбранный на прямой l) неподвижно вне некоторого

достаточно большого интервала.

Аналогичную изотопию произведем на всех прямых l, перпендикулярных гиперплоскости E^{n-1} , проходящей через \overline{M}^{n-1} ; получим изотопию E^n на себя, неподвижную вне некоторых двух гиперплоскостей E_i^{n-1} , i=1,2,

паралленых E^{n-1} .

Проделав аналогичные построения для всех ребер параллеленипеда \overline{M}^n , выходящих из некоторой одной его вершины, рассмотрим суперпозицию всех построенных изотопий E^n на себя; получим изотопию E^n на себя, переводящую \overline{M}_r^n на M_r^n . Эту изотопию, как легко видеть, можно превратить в изотопию, неподвижную вне некоторой ограниченной области V, не изменяя на области $U, V \supset \overline{U}$.

5. Существование изотопии E^n , переводящей задан-

ный компакт вкомпакт Менгера.

Теорема 2. Для компакта $K \subset E^n$, $\dim K = r$, изотопия F_t : $E^n \to E^n$, $t \in [01]$, неподвижная вне некоторой ограниченной области V и такая, что $F_1(K) \subset M_{r^n}$, существует тогда и только тогда, когда $\dim K = r$.

Доказательство. а) Так как согласно предложению 1 Dem $M_r^a = r$, то из свойства инвариантности и монотонности размерности вложения и неравенств Dem $K \geqslant \dim K$ (см. (6)) следует, что если указанная изотопия существует, то Dem K = r.

b) Пусть \overline{M}^n — некоторый параллеленинед такой, что int $\overline{M}^n \supset K$.

16. Рассмотрим полиэдр $A_{n-r-1,0}(\overline{M}^n)$. Так как Dem K=r и $\dim(A_{n-r-1,0}(\overline{M}^n))=n-r-1$, то по любому $\varepsilon_1>0$ существует ε_1 -изотопия $F_{t,1}\colon E^n\to E^n$, $t\in [01]$, пеподвижная вне $U(K,\,\varepsilon_1)$ и такая, что $F_{t,1}(K)\cap A_{n-r-1,\,0}(\overline{M}^n)=\Lambda;\,\varepsilon_1$ выберем столь малым, чтобы $U(K,\,\varepsilon_1)\subset$ \subset int (\overline{M}^n) .

Согласно условию $F_{1,1}(K)\cap A_{r-r-1,0}(\overline{M}^n)=\Lambda$, можно так выбрать разбиение параллеленинеда \overline{M}^r на параллеленинеды первого ранга, что $N_{n-r-1,0}(\overline{M}^n)\cap F_{1,1}(K)=\Lambda$, поэтому будем иметь $F_{1,1}(K)\subset \operatorname{int}(\overline{M}^n_{r,1})$.

- 2° . Рассмотрим полиэдр $A_{n-r-1,1}(\overline{M}^n)$. Так как $\mathrm{Dem}\, F_{1,1}(K)=r$ и $\mathrm{dim}\, (A_{n-r-1,1}(\overline{M}^n))=n-r-1$, то по любому $\varepsilon_2>0$ существует ε_2 -изотония $F_{1,2}\colon E^n\to E^n,\ t\in [01]$, неподвижная вне $U(F_{1,1}(K),\varepsilon_2)$ и такая, что $F_{1,2}F_{1,1}(K)\cap A_{n-r-1,1}(\overline{M}^n)=\Lambda;\ \varepsilon_2$ выберем столь малым, чтобы $U(F_{1,1}(K),\varepsilon_2)\subset \mathrm{int}\, (\overline{M}^n,1)$. Согласно условию $F_{1,2}F_{1,1}(K)\cap A_{n-r-1,1}(\overline{M}^n)=\Lambda$, можно так выбрать разбиение параллеленинеда \overline{M}^n на нараллеленинеды второго ранга, что $N_{n-r-1,1}(\overline{M}^n)\cap F_{1,2}F_{1,1}(K)=\Lambda$, ноэтому будем иметь $F_{1,2}F_{1,1}(K)\subset \mathrm{int}\, \overline{M}^n,2$ и т. д.
- ∞° . Получим последовательность ε_k -изотоний $F_{t,k}$: $E^n \to E^n$, $t \in [01]$, так как числа ε_k , $k=1,2,\ldots$, выбираются независимо, то можно предполагать, что эта последовательность удовлетворяет условиям леммы 1 из

(6), поэтому в пределе при
$$k \to \infty$$
 получим ϵ -изотопию $F_t = \prod_{k=1}^{n} F_{t,k},$

 $t \in [01]$, неподвижную вне $U(K, \, \varepsilon)$, $\varepsilon > \sum_{k=1}^{\infty} \varepsilon_k$, и такую, что $F_1(K) \subset$

 \overline{M}_r^n , где компакт $\overline{M}_r^n = \bigcap_{k=1}^\infty \overline{M}_{r,k}^n$ получился одновременно с построением последовательности изотопий $F_{t,k}$, $t \in [01]$, $k=1,2,\ldots$, причем мы пользуемся тем, что выбор полиэдров $A_{n-r-1,k}(\overline{M}^n)$, $k=1,2,\ldots$, в процессе доказательства согласован с условнем построения компакта \overline{M}_r^n , т. е. при делении куба \overline{M}^n гиперплоскостями кубы более высокого ранга измельчаются. Далее применяем предложение 2.

Замечание 1. В работе (4) Боте получил условие, необходимое и достаточное, для того чтобы для компакта K, $\dim K = r$, существовал гомеоморфизм E^n на себя, переводящий K в M_r^n ; если же r = n-1 или r = n-2, $n \neq 3$, то Боте доказывает, что такой гомеоморфизм существует всегда. Боте построил пример одномерного компакта K, гомеоморфного кривой Менгера M_1° в E° , для которого не существует гомеоморфизма E° на себя, переводящего K в M_1° ; поэтому (в силу теоремы 2) $\dim K = 0$ Dem K = 2, тогда как $\dim K = 1$ (3).

Математический институт им. В. А. Стеклова
Академии наук СССР
Москва

Поступило 7 IV 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ K. Menger, Dimensionstheorie, Leipzig — Berlin, Teubner, 1928. ² S. Lefschetz, Ann. Math., 32, 521 (1931). ³ H. Bothe, Fund. Math., 54, № 3, 251 (1964). ⁴ H. Bothe, Fund. Math., 56, № 2, 203 (1964). ⁵ M. A. Штанько, ДАН, 186, 1269 (1969). ⁶ M. A. Штанько, Матем. сборн., 83, 125, 234 (1970). ⁷ M. A. Штанько, ДАН, 198, № 4 (1971).