УДК 517.53

MATEMATHKA

И, И. БАВРИН

ОБОБЩЕНИЕ ИНТЕГРАЛЬНЫХ ФОРМУЛ КОШИ, ШВАРЦА И ПУАССОНА

(Представлено академиком М. А. Лаврентьевым 16 IV 1971)

Автором (1-9) в случае одного комплексного переменного дан ряд обобщений интегральных формул Коши, Шварца и Пуассона. В настоящей заметке в случае круга получены общие интегральные формулы (7). (8) и (9), из которых, помимо новых интегральных представлений, следуют как формулы Коши, Шварца и Пуассона, так и их обобщения, данные М. М. Джрбашяном (10, 11) и автором (1-9). При изложении сохраняем обозначения, использованные в (5, 7). Кроме того, здесь же приводится приложение одпой из установлениых автором структурных формул (12), формула (1)) к разрешимости тригонометрической проблемы моментов, ассоципрованной с системой функций $\omega_j(x) \in \Omega$ $(j=1,\ldots,m)$.

1. Пусть функция

$$f(z) = \sum_{n=0}^{\infty} b_n z^n \tag{1}$$

голоморфиа в круге |z| < R. Автором (°) установлено, что для любого о $(0 < \rho < R)$ и любых $k = 0, 1, 2, \ldots$; $\tilde{k} = 0, 1, 2, \ldots$ справедливы интегральные формулы

$$f(z) = \frac{1}{2\pi} \int_{0}^{2\pi} L_{a\overline{a}}^{(-k,\widetilde{k})} \left[C_{(\widetilde{\omega})} \left(e^{-i\theta} \frac{z}{\rho}; \omega \right) \right] L_{a\widetilde{a}}^{(k,-\widetilde{k})} \left[f_{(\omega)} \left(\rho e^{i\theta}; \widetilde{\omega} \right) \right] d\theta$$

$$(|z| < \rho);$$
(2)

$$f(z) = i \operatorname{Im} f(0) + \frac{1}{2\pi} \int_{0}^{2\pi} L_{\widetilde{a}\widetilde{a}}^{(-k,\widetilde{k})} \left[S_{\widetilde{\omega}} \left(e^{-i\theta} \frac{z}{\rho}; \omega \right) \right] J_{\widetilde{a}\widetilde{a}}^{(k,-\widetilde{k})} \left[\operatorname{Re} f_{(\omega)} \left(\rho \varepsilon^{i\theta}; \widetilde{\omega} \right) \right] d\theta *$$

$$(|z| < \rho). \tag{3}$$

Из формулы (3) имеем

$$\operatorname{Re}_{|z| < \rho} f(z) = \frac{1}{2\pi} \int_{0}^{c_{\pi}} J_{a\widetilde{a}}^{(k,\widetilde{k})} \left[P_{(\widetilde{\omega})} \left(\varphi - \theta, \frac{r}{\rho}; \omega \right) \right] J_{a\widetilde{a}}^{(k,-\widetilde{k})} \left[\operatorname{Re} f_{(\omega)} \left(\rho e^{i\theta}; \widetilde{\omega} \right) \right] d\theta$$

$$(z = re^{i\varphi}). \tag{4}$$

Последняя формула и формула, полученная в результате применения формулы (4) к функции -if(z), приводят к соотношению

$$f(z) = \frac{1}{2\pi} \int_{0}^{2\pi} J_{\alpha\widetilde{\alpha}}^{(-k,\widetilde{k})} \left[P_{\widetilde{(\omega)}} \left(\varphi - \theta, \frac{r}{\rho}; \omega \right) \right] L_{\alpha\widetilde{\alpha}}^{(k,-\widetilde{k})} \left[f_{(\omega)} \left(\rho e^{i\theta}; \widetilde{\omega} \right) \right] d\theta$$

$$(z = re^{i\tau}).$$

$$(5)$$

^{*} Напомиим, что здесь $\omega=(\omega_1,\ldots,\omega_m)$, $\widetilde{\omega}=(\widetilde{\omega_1},\ldots,\widetilde{\omega_{\widetilde{m}}}).$

Так как функция (1) голоморфиа в круге |z| < R, то голоморфиа в этом же круге и функция

$$f'(z) = \sum_{n=1}^{\infty} n b_n z^{n-1}.$$

Зпачит ((6), теорема 1), функция

$$L^{(\omega)}\left[f'\left(re^{i\varphi}\right)\right] \equiv f'_{(\omega)}\left(re^{i\varphi}\right) = \sum_{n=1}^{\infty} \Delta_{n-1}^{(1)} \dots \Delta_{n-1}^{(m)} nb_n\left(re^{i\varphi}\right)^{n-1}$$

голоморфна в том же круге |z| < R. Отсюда следует, что функция

$$f'_{(\omega)}(z; \widetilde{\omega}) = \sum_{n=1}^{\infty} \frac{\Delta_{n-1}^{(1)} \dots \Delta_{n-1}^{(m)} n}{\widetilde{\Delta}_{n-1}^{(1)} \dots \widetilde{\Delta}_{n-1}^{(\widetilde{m})}} b_n z^{n-1},$$

где $\tilde{\Delta}_n^{(j)}$ $(n=0,1,2,\ldots)$ — последовательность чисел, определенная в (7), голоморфна в круге |z| < R (используется формула Коши — Адамара).

Далее, в силу одной формулы * из (3), в круге |z| < R имеем

$$f(z) = \alpha f(0) + z^{\alpha} L_{1, \alpha}^{(-\alpha)} [f^{(\alpha)}(z)] **,$$
 (6)

где α — число, равное 0 или 1. Применяя к функции $f^{(\alpha)}(z)$ формулы (2), (3), (5) и подставляя это в формулу (6), получим

$$f(z) = \alpha f(0) + \frac{z^{\alpha}}{2\pi} \int_{0}^{2\pi} L_{1, \alpha}^{(-\alpha)} \left[L_{a\widetilde{a}}^{(-k, \widetilde{k})} \left[C_{(\widetilde{\omega})} \left(e^{-i\theta} \frac{z}{\rho}; \omega \right) \right] \right] \times$$

$$\times L_{a\widetilde{a}}^{(k, -\widetilde{k})} \left[f_{(\omega)}^{(\alpha)} \left(\rho_{zi\theta}; \widetilde{\omega} \right) \right] d\theta *** \left(|z| < \rho \right),$$

$$f(z) = \alpha f(0) + iz^{\alpha} \operatorname{Im} f^{(\alpha)}(0) +$$

$$(7)$$

$$+\frac{z^{\alpha}}{2\pi} \int_{0}^{2\pi} L_{1,\alpha}^{(-\alpha)} \left[L_{\alpha}^{(-k,\widetilde{k})} \left[S_{(\widetilde{\omega})} \left(e^{-i\theta} \frac{z}{\rho}; \omega \right) \right] J_{\alpha}^{(k,-\widetilde{k})} \left[\operatorname{Re} f_{(\omega)}^{(\alpha)} \left(\rho z^{(0)}; \widetilde{\omega} \right) \right] d\theta$$

$$(|z| < \rho), \tag{8}$$

$$f(z) = \alpha f(0) + \frac{z^{\alpha}}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} J_{1,\alpha}^{(-\alpha)} \left[J_{\alpha \widetilde{\alpha}}^{(-k,\widetilde{k})} \left[P_{(\widetilde{\omega})} \left(+ -\theta, \frac{r}{\varphi}; \omega \right) \right] \right] L_{\alpha \widetilde{\alpha}}^{(k,-\widetilde{k})} \left[f_{(\omega)}^{(\alpha)} \left(\varrho e^{i\theta}; \widetilde{\omega} \right) \right] d\theta$$

$$(z = re^{i\varphi}). \tag{9}$$

Таким образом, установлена

Теорема 1. Если функция (1) голоморфиа в круге |z| < R и α — число, равное 0 или 1, то для любого ρ (0 $< \rho < R$) и любых $k=0,1,2,\ldots$; $\widetilde{k}=0,1,2,\ldots$ справедливы интегральные формулы (7)-(9).

2. Из множества следствий, вытекающих из интегральных формул (7)—(9), ограничимся лишь некоторыми следствиями из формулы (7).

$$f(z_1, \ldots, z_n) = f(0, \ldots, 0) + \sum_{\nu=1}^n z_{\nu} L_1^{(-1)} [f_{z_{\nu}}(z_1, \ldots, z_n)] \quad (n \geqslant 1),$$

где $f(z_1,\ldots,z_n)$ — функция, голоморфная в звездной относительно начала координат области G пространства C^n .

** $f^{(0)}(z) = f(z)$. *** $f_{(\omega)}^{(0)}(\rho e^{i\theta}; \widetilde{\omega}) = f_{(\omega)}(\rho e^{i\theta}; \widetilde{\omega})$.

^{*} Имеется в виду формула

1) $\alpha=0,\ k=0,\ \tilde{k}=0,\ \omega=(1,\ldots,1),\ \tilde{\omega}=(1,\ldots,1).$ В этом случае

имеем формулу Коши.

2) $\alpha = 0$, k = 0, $\tilde{k} = 0$, $\omega = ((1 - x)^{\beta}, 1, ..., 1)$, $\tilde{\omega} = (1, ..., 1)$, где $-1 < \beta < +\infty$. При этом условии формула (7) переходит в формулу М. М. Джрбашяна ((10), глава IX, формула 2.5).

3) $\alpha = 0$, k = 0, $\tilde{k} = 0$, $\omega = (\omega_1, 1, ..., 1)$, $\tilde{\omega} = (1, ..., 1)$, где $\omega_1 = \omega_1(x) - \text{дюбая функция из класса } \Omega$ (11). В этом случае имеем снова

формулу М. М. Джрбашяна ((11), формула 2.20).

4) $\alpha = 0$, k = 0, $\tilde{\kappa} = 0$, $\tilde{\omega} = (1, \dots, 1)$. При таком условии имеем первую из двух интегральных формул автора в теореме 1 из (6).

 $5)\ \alpha = 0,\, k = 0,\, \widetilde{k} = 0.$ В этом случае имеем первую из двух интеграль-

ных формул автора в теореме 1 из (7).

6) $\alpha = 0$. При этом условии формула (7) переходит в интегральную формулу (5) из (9), установленную автором.

7) $\omega = (1, ..., 1)$, $\widetilde{\omega} = (1, ..., 1)$. \widetilde{B} этом случае имеем формулу (1) автора из (5).

8) $\tilde{k} = 0$, $\omega = (1, ..., 1)$, $\tilde{\omega} = (1, ..., 1)$. При таком условии формула (7) переходит в формулу (2.8) автора из (3).

(2) $\alpha = 0$, $\tilde{k} = 0$, $\omega = (1, ..., 1)$, $\tilde{\omega} = (1, ..., 1)$. В этом случае имеем

формулу (2) автора из (2); в (1) это формула (5.4).

10) $\alpha = 1$. При этом условии из формулы (7) получаем новую общую формулу.

Аналогичные следствия вытекают из формулы (8). То же и в случае

формулы (9).

3. М. М. Джрбашяном (11) установлены достаточные условия разрешимости тригономстрической проблемы моментов, ассоциированной с функцией $\omega(x) \in \Omega$. Здесь как приложение данного автором ((12), теорема 1) структурного представления класса $U_{\{\omega_1,\ldots,\omega_m\}}$, который кратко обозначим через $U_{(\omega)}$ ($\omega=(\omega_1,\ldots,\omega_m)$, так и всюду ниже), приводится теорема 4, устанавливающая достаточные условия разрешимости тригономстрической проблемы моментов, ассоциированной с системой функций $\omega_j(x) \in \Omega$ ($j=1,\ldots,m$). Прежде отметим следующие предложения, которые также используются при доказательстве теоремы 4.

T е o p e m a 2. E cлu κ aжd aя uз ϕ ункций $\omega_i(x) \in \Omega$ $(j=1,\ldots,m)$ не убывает на [0,1), то ϕ ункции $C(z;\omega)$ u $S(z;\omega)$ e κ руге |z| < 1 имеют не-

отрицательную реальную часть.

Теорема 3. 1) Если каждая из функций $\omega_j(x) \in \Omega$ $(j=1,\ldots,m)$ не убывает на [0,1) и $\omega_j(x) \uparrow +\infty$ при $x \uparrow 1$, то

$$U_{(\alpha)} \subset U$$
, (10)

2) Если каждая из функций $\omega_j(x) \in \Omega$ (j = 1, ..., m) не возрастает на [0, 1) и $\omega_i(x) \downarrow 0$ при $x \uparrow 1$, то

$$U \subset U_{(\omega)}$$
 (11)

3) В соответствующих условиях оба включения (10) и (11) строгие. Доказательство теоремы 2 сводится к установлению того, что последовательность $\{P_k r^k\}$ ($0 \le r < 1$), где $P_k = (\Delta_k^{(1)}, \ldots \Delta_k^{(m)})^{-1}$, невозрастающая и выпуклая, а в процессе доказательства теоремы 3 существенно используется теорема 1 из (12).

Tеорема 4. Предположим, что $\omega_j(x) \in \Omega$ $(j=1,\ldots,m)$ и $\Delta_0^{(j)}=1$,

$$\Delta_n^{(j)} = n \int_0^1 \omega_j(x) x^{n-1} dx \quad (n = 1, 2, \ldots).$$

1) Пусть каждая из функций $\omega_i(x)$ $(i=1,\ldots,m)$ не убывает на [0,1), а $\psi_0(\theta)$ — неубывающая ограниченная функция на $[0,2\pi]$.

Тогда тригонометрическая проблема моментов

$$\boldsymbol{c}_n = \int_0^{2\pi} e^{-in\theta} d\psi(\theta) \quad (n = 0, \pm 1, \pm 2, \ldots),$$

где

$$c_n = P_n \int_0^{2\pi} e^{-in\theta} d\psi_0(\theta),$$

имеет решение $\psi(\theta) = \tilde{\psi}_{(\omega)}(\theta)$ в классе неубывающих и ограниченных функций.

2) Пусть каждая из функций $\omega_i(x)$ (i = 1, ..., m) не возрастает на [0, 1) и $\omega_i(x) \downarrow 0$ при $x \uparrow 1$, а $\psi_0(\theta)$ — функция конечного изменения на $[0, 2\pi]$.

Тогда тригонометрическая проблема моментов

$$\widetilde{c_n} = \int\limits_0^{2\pi} e^{-in\theta} d\psi(\theta) \quad (n = 0, \pm 1, \pm 2, \ldots),$$

где

$$\widetilde{c_n} = P_n^{-1} \int\limits_0^\pi e^{-in\theta} \, d\psi_0(\theta),$$

имеет решение $\psi(\theta) = \tilde{\psi}_{(m)}(\theta)$ в классе функций с конечным изменением на $[0, 2\pi]$.

Московский областной педагогический институт им. Н. К. Крупской

Поступило 31 III 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Баврин, Уч. зап. Московск. обл. пед. инст. им. Н. К. Крупской, 166, 3 (1966). ² И. И. Баврин, ДАН, 172, № 6 (1967). ³ И. И. Баврин, Уч. зап. Московск. обл. пед. инст. им. Н. К. Крупской, 188, 3 (1967). ⁴ И. И. Баврин, ДАН, 180, № 1 (1968). ⁵ И. И. Баврин, ДАН, 186, № 2 (1969). ⁶ И. И. Баврин, ДАН, 187, № 3 (1969). ⁷ И. И. Баврин, ДАН, 194. № 2 (1970). ⁸ И. И. Баврин, Уч. зап. Московск. обл. пед. инст. им. Н. К. Крупской, 269, 3 (1970). ⁹ И. И. Баврин, Уч. зап. Московск. обл. пед. инст. им. Н. К. Крупской, 269, 3 (1970). ⁹ И. И. Баврин, ДАН, 198, № 5 (1971). ¹⁰ М. М. Джрбашян, Интегральные преобразования и представления функций в комплексной области, М., 1966. ¹¹ М. М. Джрбашян, Изв. АН ССССР, сер. матем., 32, № 5, 1075 (1968). ¹² И. И. Баврин, ДАН, 193, № 4 (1970).