УДК 669.14.017.3:541.12.017

## ТЕХНИЧЕСКАЯ ФИЗИКА

## к. п. бунин, б. ф. марцинив, н. и. репина, а. и. яценко О ПЕРИТЕКТИЧЕСКОМ ПРЕВРАЩЕНИИ В СТАЛЯХ

(Представлено академиком Г. В. Курдюмовым 7 VI 1971)

Моделирование перитектического превращения на легкоплавких системах (1-4) недостаточно для характеристики его структурных и концентрационных особенностей в сталях. Мы получили информацию о перитектической кристаллизации путем закалочно-структурного исследования железоуглеродистых сплавов, легированных Al, Si и Cr. С учетом влияния легирования на перитектическое равновесие (5-7) выбран состав сплавов внутри перитектической области, в расширенной части ее температурного интервала (табл. 1).

Выплавленные из армко-железа с добавками легирующих и графита базовые сплавы мы переплавляли в кварцевых ампулах в печи Тамманна, закаливая пробы в интервале кристаллизации и ниже (в среднем от 1500 до 1260° С через 20°). Микроскопически анализировали первичную структуру и микрорентгеноспектральным эталонным методом (на установках MAP-1 и MS-46 «Сашеса») определяли распределение легирующих элементов в ее составляющих.

Последовательность превращений при затвердевании исследованных сплавов сходна. Кристаллизация начиналась с образованием дендритов  $\delta$ -твердого раствора при охлаждении с печью от 1580-1600 до  $1460-1440^{\circ}$  С сплавов с Al и Si, до  $1480-1460^{\circ}$  С сплава с Cr. Остатки жидкости в дендритных междуветвиях переходили при закалке в аустенит (мартенсит) со следами мелких «закалочных» дендритов. Ветви  $\delta$ -дендритов в основном оставались непревращенными; но закалкой не удавалось подавить в них после затеердевания превращение  $\delta \rightarrow \gamma$  с образованием одиночных иластинчатых аустенитных участков.

Образование перитектического аустенита до закалки зафиксировано при охлаждении сплавов с Al и Si до 1420—1400° C, с Cr — до 1460° C. Оно начиналось на отдельных участках границы жидкости и δ-фазы, наиболее интенсивно в «устьях» сближающихся дендритных ветвей. Преимущественный рост аустенита на начальных этапах перитектического превращения

Таблица 1

| №<br>сплава | Содержание, % |    |                   |                                        | Локальные содержания легирующих                        |                                                         |                                                                |
|-------------|---------------|----|-------------------|----------------------------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
|             | С             | ]  | цие әлемен-<br>гы | Температура<br>закалки, <sup>*</sup> С | в феррите<br>осевых<br>участков<br>ветвей<br>дендритов | в аустенитном<br>ободке вок-<br>руг ветвей<br>дендритов | в «закаленной<br>жидкости»<br>междуветвий                      |
| 1           | 0,71          | Al | 3,54              | 1420                                   | 3,8<br>3,9                                             | 3,7<br>3,9                                              | $\frac{3,2}{3,2}$                                              |
| 2           | 0,48          | Si | 5,42              | 1400<br>1350<br>1320                   | 5,9<br>5,05<br>5,5<br>6,5                              | 5,3<br>5,75                                             | 6,3                                                            |
| 3           | 0,45          | Cr | 17,16             | 1260<br>1460<br>1400<br>1360           | 6,5<br>16,2<br>13,8<br>15,6                            | 5,3<br>16,4<br>14,1<br>15,4                             | $\begin{bmatrix} 6,4\\ 7,0\\ 25,1\\ 23,9\\ 27,4 \end{bmatrix}$ |

вдоль границы  $\delta$  — ж приводит к образованию сплошных оболочек вокруг дендритных ветвей с изоляцией непревращенной  $\delta$ -фазы от жидкости (рис. 1). После закалки при специальном травлении видны внутренние границы раздела аустенита с непревращенными сердцевинами ветвей и внешние — с жидкостью.

По мере снижения закалочной температуры аустенитные оболочки разрастались в глубь дендритных ветвей и в междуветвия. Раньше исчерпывалась жидкость в узких каналах между дендритными ветвями высокого порядка, в междендритных зонах превращение во всех сплавах затягивалось до 1380—1360° С. Помимо роста перитектического аустенита, при «закалке» наблюдалось кристаллогеометрически упорядоченное δ → γ-превра-

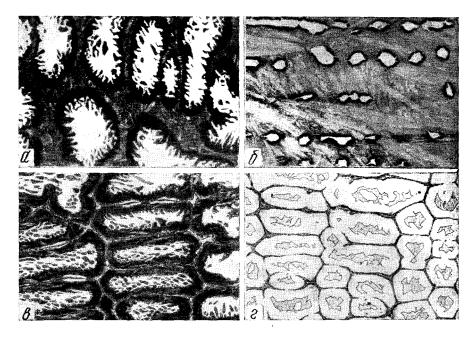



Рис. 1. Структура сплавов, закаленных в процессе непрерывного охлаждения: a — сплав 1 от 1400° С,  $\delta$  — сплав 1 от 1320° С,  $\epsilon$  — сплав 2 от 1300° С,  $\epsilon$  — сплав 3 от 1400° С; a,  $\delta$ ,  $\epsilon$  — травлено пикратом натрия,  $\epsilon$  — травлено раствором 5% FeCl<sub>3</sub> + 15% HCl в воде; a,  $\delta$  — 320  $\times$ ,  $\epsilon$ ,  $\epsilon$  — 200  $\times$ 

щение внутри дендритных ветвей, морфологически подобное аустенитиза-

ции фегрита при нагреве (8).

С ликвидацией жидкости по окончании превращения  $\delta + \kappa \to \gamma$  пробы еще сохраняли двухфазную структуру  $\alpha + \gamma$  с изолированными ферритыми участками внутри вствей дендритов. Далее продолжалось превращение  $\delta \to \gamma$  с постепенным относительно равномерным перемещением его фронта по мере уменьшения «островков» феррита в отличие от избирательного, ориентврованного роста аустенитных пластин при более высоких температурах. Включения  $\delta$ -феррита в виде четкообразных цепочек в направлении осей бывших дендритных вствей сохранялись в аустенитизированной матрице до  $1340-1300^\circ$  С (рис.  $1\delta$ ). Скорость  $\delta \to \gamma$ -превращения в сплаве  $\epsilon$  Сгвыше, а температурный интервал уже, чем в сплавах с A1 и Si.

Микрорентгеноспектральный анализ исследованных сплавов обнаружил значительные различия составов б-феррита и жидкости. Концентрация Al в дендритах б-фазы выше, а Si и Cr ниже, чем в жидкости. Трансформация исходных фаз в аустенит в процессе перитектического превращения сопровождалась перераспределением не только углерода, но и легирующих элементов (табл. 1). Al и Si перераспределились сильнее, чем Cr, вероятно, из-за различий диффузивности и градиентов химического потенциала в свя-

зи с равновесными составами фаз. В условиях охлаждения, далеких от равновесия, перераспределение не было полным и перитектический аустенит на начальных стадиях превращения в значительной мере наследовал концентрационные отличия исходных фаз. С уменьшением количества непревращенного феррита концентрация легирующих элементов в нем постепенно возрастала по сравнению с аустенитом. На заключительном этапе превращения «островки» феррита значительно обогащались Si, Al и, в несколько меньшей степени, Cr. После полной аустенитизации это привело к возникновению «двойной» ликвации Si и Cr соответственно двум концентрационным максимумам в осях бывших дендритных ветвей и в междуветвиях. Для Al сохранялась обратная внутрикристаллическая ликвация с понижением его концентрации от осей дендритных ветвей к периферии.

Институт черной металлургии Днепропетровск Поступило 17 V 1971

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> D. R. Uhlmann, G. A. Chadwick, Acta Metallurgica, № 9, 835 (1961).

<sup>2</sup> J. A. Sartell, D. J. Mack, J. Inst. Met., 93, № 1, 19 (1964).

<sup>3</sup> H. B. Гречный, В. Н. Инатова, ДАН, 185, № 5, 1079 (1969).

<sup>4</sup> H. B. Гречный, В. Н. Инатова, ДАН, 185, № 6, 1320 (1969).

<sup>5</sup> K. Löhberg, A. Ueberschauer, Giessereiforshung, № 4, 171 (1969).

<sup>6</sup> W. Patterson, G. Hülsenbeck, H. A. S. Madi, Giessereiforschung, № 2, 49 (1968).

<sup>7</sup> K. Bungardt, E. Kunze, E. Horn, Arch. Eisenhüttenwesen, № 3, 193 (1958).

<sup>8</sup> К. П. Бунин, А. И. Яценко, В сборн. Научи. тр. Инст. черн. металлургий, в. 13, М., 1960.