ГЕОХИМИЯ:

УДК 546.26-162

## Т. Д. ВАРФОЛОМЕЕВА, А. В. ГУЛЮТИН, Л. Н. ДЖАВАДОВ

## ИССЛЕДОВАНИЕ ПРИМЕСЕЙ В ОБРАЗЦАХ ЕСТЕСТВЕННОГО КАРБОНАДО

(Представлено академиком Л. Ф. Верещагиным 24 XI 1970)

Существует значительное количество работ по исследованию примесей в монокристаллах алмаза, однако поликристаллические формы такие, как баллас и карбонадо, до сих пор мало изучены. По данным К. Лонсдейл (1), в двух исследованных ею образцах карбонадо были найдены пебольшие количества графита и следы силикатов.

Нами были исследованы шесть образцов карбонадо методом обычного спектрального анализа. Содержание примесей (вес %) в трех образцах

оказалось следующим:

Эти же элементы были обнаружены в работе (2).

Для исследования характера распределения примесей на трех образцах были приготовлены шлифы, полученные методом последовательного

шлифования алмазными микропорошками. На рис. 1 представлена фотография шлифа карбонадо. Как видно, в карбонадо имеются неалмазные включения с характерным размером 1——100 µ.

Для исследования состава включений и распределения примесей по поверхности шлифа карбонадо был использован метод локального спектрального анализа. Испарение заданного участка и возбуждение эмиссионного спектра осуществлялось с помощью сфокусированно-

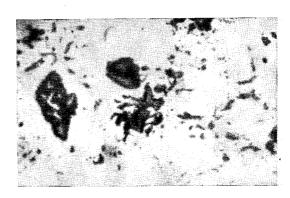



Рис. 1. Фотография микроструктуры образца,  $450 \times .$  Светлое поле — алмаз, темное — включение

го излучения ОКГ, работающего в режиме модулированной добротности. Установка была собрана на базе ОКГ ГОС-300 и спектрографа ИСП-22. Фокусирующая система обеспечивала возбуждение эмиссионного спектра с поверхности  $\sim 30$   $\mu$  и глубиной 2-5  $\mu$ . Чувствительность данной установки позволяла фиксировать концентрации элементов (при указанной локальности) от  $10^{-3}$  вес. %.

Для образцов 4 и 5, содержащих достаточно крупные включения, указанным методом проведено исследование состава и концентраций примесей как во включениях, так и в чистом алмазиом поле. Из табл. 1 видно,

Распределение примесей по пилифу образца № 4 (вес. %)

| -                                               | Включения                                            |                                                         |                                                                    |                                                        |                                            |                                                                              | Алмазное поле                             |                                                              |                                                  |                                                          |  |
|-------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--|
|                                                 | Mg<br>(10 <sup>-3</sup> )                            | Al (10-3)                                               | Si<br>(10 <sup>-2</sup> )                                          | Ti<br>(10-2)                                           | Fe<br>(10 <sup>-2</sup> )                  | Mg<br>(10 <sup>-3</sup> )                                                    | Al<br>(10 <sup>-3</sup> )                 | Si<br>(10-2)                                                 | Ti<br>(10-2)                                     | Fe (10 <sup>-2</sup> )                                   |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 9<br>4<br>1,5<br>3,5<br>7<br>7<br>4<br>4<br>2,5<br>4 | 5<br>4<br>2<br>6<br>1,5<br>6<br>6<br>4<br>4<br>2<br>0,1 | 1,5<br>0,8<br>0,8<br>0,8<br>1,5<br>3<br>7<br>6<br>4<br>7<br>5<br>3 | 3<br>10<br>2<br>5<br>4<br>4<br>4<br>4<br>15<br>15<br>3 | 6<br>1<br>0,7<br>3,5<br>8<br>8<br>4<br>1,5 | 2,5<br>2,5<br>1,5<br>1,5<br>1,5<br>1,5<br>2,5<br>1,5<br>4<br>2,5<br>4<br>2,5 | 3<br>3<br>2<br>2<br>2<br>3<br>7<br>3<br>6 | 6<br>0,8<br>0,8<br>1,5<br>1,5<br>1,5<br>4<br>4<br>1,5<br>1,5 | 3<br>3<br>2<br>2<br>2<br>4<br>15<br>4<br>3<br>10 | 1,5<br>1<br>0,8<br>0,8<br>0,8<br>0,8<br>2<br>2<br>1<br>1 |  |
| Среднее                                         | 5,0                                                  | 6,3                                                     | 3,7                                                                | 7,7                                                    | 3,7                                        | 2,3                                                                          | 3,4                                       | 2,3                                                          | 5,0                                              | 1,2                                                      |  |

что концентрации Mg, Al, Si, Ti во включениях примерно в два раза больше, чем в алмазном поле, а Fe — в три раза.

В другом образце в исследованном алмазном поле шлифа были обнаружены следующие элементы:  $Mg (1-4) \cdot 10^{-3}$ ;  $Al (2-7) \cdot 10^{-3}$ ;  $Fe - (0,5-2) \cdot 10^{-2}$ ;  $Ca - 10^{-3}$ ;  $Si - 1,5 \cdot 10^{-2}$ ;  $Ti - (1-3) \cdot 10^{-2}\%$ . Концентрации этих элементов изменялись от точки к точке в указанных пределах. Во включениях существенно выше оказалась концентрация  $Si (30 \cdot 10^{-1}\%)$  и  $Ti (30 \cdot 2\%)$ . При исследовании состава включений на поверхности шлифа образца, содержащего более мелкие включения, обнаружены те же элементы во включениях, что и в образце (табл. 1) и примерно в тех же концентрациях.

Описанным мстодом было определено локальное содержание Fe и Ti на поверхности образцов 1, 2, 3:

| Обра <b>зе</b> ц | Fe (10 <sup>-2</sup> ) | Ti (10-1) |
|------------------|------------------------|-----------|
| 1                | 10                     | 6         |
| 2                | 2                      | 1         |
| 3                | 4                      | 1,5       |

Как видпо из полученных данных, элементарный состав примесей в алмазах типа карболадо такой же, как и для монокристаллических алмазов, что дает основание предположить присутствие в карбонадо тех же минералов (оливии, пироксены, гранаты альмандинового ряда и пр.), которые паиболее часто втречаются в виде включений в монокристаллах.

В заключение авторы выражают глубокую благодарность акад. Л. Ф. Верещагину за помощь и поддержку при выполнении работы.

Институт физики высоких давлений Академии паук СССР Академгородок Подольск, р-на Моск, обл. Поступило 28 VII 1970

## цитированная литература

¹ Physical Properties of Diamond, London, 1965. ² Я. М. Кравцов, С. Н. Футергендлер, Зап. Мин. общ., 4, 89 (1960).