УДК 549.732

КИСТАЛЛОГРАФИЯ

Ю. К. ЕГОРОВ-ТИСМЕНКО, А. Е. ГУЩИНА, Д. П. ШАШКИН, М. А. СИМОНОВ, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ФРОЛОВИТА $CaB_2O_4 \cdot 4H_2O = Ca[B(OH)_4]_2$

Минерал фроловит, открытый А. С. Петровой на одном из месторождений Урала (¹) и позднее найденный А. Е. Лисицыным и др. (²) в Сибири, входит в группу природных метаборатов кальция (³). Кристалломорфологическое описание всех минералов этой группы дано в (¹⁻⁷). Для всех ее представителей характерно постоянное отношение CaO: $B_2O_3 = 1:1$ при возрастающем содержания воды от безводного кальциборита до интиводного центагидроборита, с чем, по-видимому, связано понижение не только симметрии от ромбической до триклинной, но также твердости и плотности.

При детальном структурном исследовании фроловита мы исходили из приближенной формулы $CaB_2O_4 \cdot 3,65 H_2O$, рассчитанной на основании химического анализа Н. Н. Кузнецовой (вес. %): $SiO_2 - 0,57$; $B_2O_3 - 34,20$; $Fe_2O_3 - 0,10$; MgO - 0,72; CaO - 28,70; $H_2O - 32,96$; $SO_3 - 1,78$; $\sum = 99,03$.

Обломки кристаллов фроловита размерами в тысячные доли мм³ отбирались и юстировались по лауэграммам методом Уманского — Квитки. Параметры триклинной ячейки (лауэ-класс $C_i = 1$): $a = 7,80 \pm 0,02$ Å, $b = 5,70 \pm 0,01$ Å, $c = 7,95 \pm 0,02$ Å, $a = 108,5 \pm 0,5^\circ$, $\beta = 101,5 \pm 0,5^\circ$, $\gamma = 108,5 \pm 0,5^\circ$; Z = 2, $\rho_3 = 2,14$ г/см³, $\rho_x = 2,19$ г/см⁴

Основной экспериментальный материал при расшифровке структуры фроловита дали развертки слоевых линий (кфорограммы, Мо-излучение): 0kl, 1kl, h0l - h4l (max sin $\theta / \lambda = 1,04$ Å⁻¹).

Интенсивности рефлексов оценивались стандартным приемом по маркам почернения с шагом $\sqrt{2}$.

Таблица 1

Атомы	x/a	y/b	z/c	B _j	Атомы	x/a	y/b	z/c	B;
Ca (OH) ₁ (OH) ₂ (OH) ₃ (OH) ₄ (OH) ₅	0,238 0,065 0,085 0,141 0,186 0,242	0,016 0,703 0,297 0,367 0,783 0,143	0,189 0,299 0,067 0,385 0,832 0,682	0,60 0,71 0,62 0,81 0,83 0,91	(OH) ₈ (OH) ₇ (OH) ₈ B ₁ B ₂	0,426 0,470 0,488 0,028 0,448	0,738 0,231 0,618 0,407 0,326	0,162 0,528 0,810 0,234 0,712	0,87 0,51 0,76 0,84 0,31

Фроловит. Координаты базисных атомов

Статистика интенсивностей по Хоуэлсу, Филлипсу и Роджерсу (³) для зон h0l и 0kl свидетельствовала в пользу центросимметричной федоровской группы $C_i = \bar{1}$, которая и подтвердилась в ходе дальнейшей расшифровки (пьезоэффект в кристаллах фроловита не обнаружен).

Структура решена методом тяжелого атома, роль которого играл Са (Z = 20). На первом этапе на проекциях xz и yz были локализованы атомы Са и циклами последовательных приближений с промежуточными разностными синтезами часть атомов О и В. Переход к трехмерным синтезам электронной плотности позволил однозначно дифференцировать все базисные атомы.

Уточнение полученной структурной модели выполнено методом наименьших квадратов по программам Б. Л. Тарнопольского и В. А. Андрианова (°) на ЭВМ М-20. Коор-

нова (°) на ЭВМ М-20. Координатам атомов (табл. 1) с приведенными там же индивидуальными температурными поправками отвечает заключительный фактор расходимости $R_{hkl} = 13,7\%$, рассчитапный по ~ 1000 незавимым ненулевым отражениям. Межатомные расстояния, вычисленные по этим координатам, приведены в табл. 2.

Анализ баланса валентных усилий (табл. 3) подтверждает, что вся анионная часть структуры фроловита представлена ОН-группами.

Два атома Са в структуре окружены каждый восьмью ОН-группами, образующими дельтадодекаэдр, т. е. координационные Са-полиэдры в

Рис. 1. Фроловит, проекция xz. Торцы параллельных стенок — слоев из спаренных Са-полиэдров объединяются В (ОН)₄-тетраэдрами

структурах фроловита, уралборита (¹⁰) и кальциборита (¹¹) подобны; разница в том, что у фроловита в ближайшее окружение Са входят только группы ОН, тогда как в уралборите окружение смешанное из ОН и О, а у кальциборита вокруг Са одни атомы О. Катионы В находятся в тетраэдрах.

Таблица 2

В₁-те траәдр		В 2-тетраәдр		Са-полиедр					
$ \begin{array}{l} \mathbf{B}_{1} - (\mathbf{OH})_{1} \\ \mathbf{B}_{1} - (\mathbf{OH})_{2} \\ \mathbf{B}_{1} - (\mathbf{OH})_{3} \\ \mathbf{B}_{1} - (\mathbf{OH})_{4} \end{array} $	1,57 1,48 1,45 1,53	$ \begin{array}{c} B_2 - (OH)_6 \\ B_2 - (OH)_8' \\ B_2 - (OH)_7' \\ B_2 - (OH)_6' \end{array} $	1,49 1,50 1,45 1,53	$\begin{array}{c} \text{Ca} - (\text{OH})_1 & 2, 39\\ \text{Ca} - (\text{OH})_2'' & 2, 56\\ \text{Ca} - (\text{OH})_3'' & 2, 53\\ \text{Ca} - (\text{OH})_3''' & 2, 62\\ \text{Ca} - (\text{OH})_6 & 2, 44 \end{array}$	$\begin{array}{c} (OH)_4'''-(OH)_6 & 3,02\\ (OH)_4'''-(OH)_2'2,38*\\ (OH)_{2'}-(OH)_1 & 2,92\\ (OH)_1-(OH)_6 & 3,19\\ (OH)_1-(OH)_6'''4,13 \end{array}$	$(OH)_{5}'' - (OH)_{7}'' 3,01$ $(OH)_{1} - (OH)_{8}'' 3,44$ $(OH)_{3}'' - (OH)_{2}'' 3,88$ $(OH)_{5}'' - (OH)_{2}'' 2,55*$ $(OH)_{2}''' - (OH)_{8}''' 3,08$			
Среднее (ОН) ₁ — (ОН) ₂ (ОН) ₁ — (ОН) ₃	1,51 2,56 2,44	Среднее (OH) ₆ — (OH) ₈ (OH) ₆ — (OH) ₂	1,49 2,41 2,36	$Ca - (OH)_{8''}^{*''} 2,47$ $Ca - (OH)_{7''}^{*''} 2,59$ $Ca - (OH)_{2'}^{*''} 2,57$	$(OH)_6^{\circ} - (OH)_8^{\circ\prime\prime}3,42$ $(OH)_7^{\prime\prime} - (OH)_8^{\prime\prime\prime}3,13$ $(OH)_1 - (OH)_7 3,28$ $(OH)_7^{\prime\prime} - (OH)_6 3,21$	$(OH)_{2}^{"} - (OH)_{2}^{'} 2.95$ $(OH)_{2}^{"} - (OH)_{4}^{'"} 3.36$ $(OH)_{4}^{"'} - (OH)_{6}^{'"} 3.44$ $(OH)_{8}^{"'} - (OH)_{3} 3.53$			
$OH_{1} - OH_{4}'$ $OH_{2} - OH_{3}$ $OH_{2} - OH_{4}'$ $OH_{3} - OH_{4}'$	2,55 2,35* 2,38* 2,48	$(OH)_{6}^{6} - (OH)_{5}^{6}$ $(OH)_{8}^{\prime} - (OH)_{7}^{7}$ $(OH)_{8}^{\prime} - (OH)_{5}^{7}$ $(OH)_{7}^{\prime} - (OH)_{5}^{7}$	2,42 2,53 2,53 2,36	Ср еднее 2,52	Среднее	3,21			
Срелнее	2.46	Срелнее	2.44						

Межатомные расстояния в структуре фроловита, А

Примечание. Звездочкой обозначены общие ребра В-тетраздра и Са-полиздра.

В структуре фроловита, наиболее четко выступающей на проекции xz (рис. 1) основной мотив — валентно пасыщенные слои Ca-[B(OH)₄]₂ в виде стенок (101) (рис. 2), которые тянутся вдоль диагонали (a + c) параллельно оси b и между собой соединены лишь водородными связями. Эти вероятные водородные связи показаны на рис. 1 пунктиром; соответствующие связям расстояния OH — OH колеблются от 2,67 до 3,02 Å (табл. 4).

79

(Са — В(ОН)₄)-стенка построена из спаренных Са-восьмивершинников, которые связаны по общему ребру; на середине его - центр инверсии, принятый за начало ячейки. В(ОН)₄-тетраэдры двух сортов. Одни соединяют пары Са-полиздров в бесконечные вдоль оси b колонки, другие связывают эти колонки в единый двумерный слой — стенку (101). В(ОН)4-

Рис. 2. Фроловит. Нейтральная (валентно) стенка из Саполиэдров и В (ОН) 4-тетраэдров

тетраэдры первого сорта можно считать более прочно связанными с Саполиэдрами через два общих ребра, которые укорочены до 2,35-2,38 Å (правило Паулинга).

Полученная модель структуры хорошо объясняет морфологические свойства минерала: совершенную спайность (101), вытянутость кристаллов вдоль короткой оси b.

Таблица З

Анио. ны	Катионы			w _i	Анио-	К атионы			w _i
	Ca	Bı	B2	$\left \sum \frac{1}{n_i} \right $	ны	Ca	Bi	B ₂	$2\frac{1}{n_i}$
(OH) ₁ (OH) ₂ (OH) ₃ (OH) ₄	2/8 2/8×2 2/8 2/8	8/4 8/4 8/4 8/4		1 1 1/4 1 1	(OH)s (OH)s (OH)7 (OH)8	2/8 2/8 2/8		$\begin{vmatrix} 3/4 \\ 3/4 \\ 3/4 \\ 3/4 \end{vmatrix}$	⁸ /4 1 1 1

Баланс валентных усилий на анионах в структуре фроловита

В соответствии с расшифрованной структурой кристаллохимическая формула фроловита $CaB_2O_4 \cdot 4H_2O = Ca[B(OH)_4]_2$, что подтверждает соответствующее заключение работы (12). В Са-борате фроловите можно увидеть портландитовый мотив, столь характерный для ряда (пементных) силикатов.

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ЦИТИРОВАННАЯ ЛИТЕРАТУРА ⁴ Е. С. Петрова, Зап. Всесоюзн. мин. общ., 4, 86, 5 (1957). ² А. Е. Лиси-цын, С. В. Малинко, Г. С. Румянцев, ДАН, 164, № 1 (1965). ³ Д. П. Шаш-кин, М. А. Симонов, Н. В. Белов, Кристаллография, 16, 1 (1971). ⁴ С. В. Малинко, Зап. Всесоюзн. мин. общ., 90, 6 (1961). ⁵ С. В. Малинко, А. Е. Ли-сицын, ДАН, 139, № 1 (1961). ⁶ С. В. Малинко, Зап. Всесоюзн. мин. общ., 92, 5 (1963). ⁷ С. В. Малинко, Н. Н. Кузнецова и др., Зап. Всесоюзн. мин. общ., 92, 6 (1963). ⁸ Е. R. Ноwells, D. С. Phillips, D. Rogers, Acta crystal-logr., 3, 210 (1950). ⁹ Б. Л. Тарнопольский, В. А. Андрианов, ЖСХ, 4, № 3, 434 (1963). ¹⁰ Д. П. Шашкин, М. А. Симонов, Н. В. Белов, ДАН, 189, № 3 (1969). ¹¹ Д. П. Шашкин, М. А. Симонов, Н. В. Белов, ДАН 195, № 2 (1970). ¹² В. Б. Кравченко, ЖСХ, 5, № 1 (1964).

Поступило 9 VII 1971

Таблипа 4

Межатомные

расстояния. отвечающие водородным связям, А

 $(OH)_4 - (OH)_5$ 2,67 $(OH)_1 - (OH)_5$ 2,79 $(OH)_4 - (OH)_6$ 3,02 $(OH)_4 - (OH)_8$ 2,81 $(OH)_5 - (OH)_8$ 2,84