УДК 541.127+542.943

ФИЗИЧЕСКАЯ ХИМИЯ

А. А. МАНТАШЯН, М. А. БЕЙБУТЯН, А. С. СААКЯН, Академик АН АрмССР А. Б. НАЛБАНДЯН

ИЗУЧЕНИЕ ГАЗОФАЗНЫХ РЕАКЦИЙ МЕТОДОМ ВЫМОРАЖИВАНИЯ РАДИКАЛОВ В ПРОЦЕССАХ ФОТОХИМИЧЕСКОГО ОКИСЛЕНИЯ МЕТАНА И ЭТАНА

Образование промежуточных продуктов в реакциях низкотемпературного окисления углеводородов связывается (¹⁻⁴) с двумя типами реакций перекисных радикалов:

$$RO_2 + RH \to ROOH + R, \tag{1}$$

$$RO_2 \rightarrow$$
альдегид + R_1O . (2)

Однако в продуктах реакции фотохимического сенсибилизированного парами ртути окисления метана и этана наряду с другими продуктами

Рис. 1. Схема установки: 1 — вакуумная рубашка, 2 реактор, 3 — подогреватель, 4 — ртутно-кварцевая ламиа ПРК-2М, 5 — электрическая печка, 6 — металлический змеевиковый холодильник, 7 — резервуар для СО2, 8, 9 — ловушки для продуктов реакции, 10 — пробка, 11 — сосуд Дьюара, 12 — отросток, на котором происходит вымораживание радикалов, 13 — регулятор подачи СО2, 14 — краны, 15 — сопло, через которое вытягиваются радикалы, 16 — цилиндрический объем, охлаждаемый дистиллированной водой, 17 — резонатор спектрометра э.п.р., 18 — термопара

были обнаружены соответственно метиловый (5) и этиловый (6) спирты, образование которых трудно объяснить реакциями (1) и (2). Для решения возникших противоречий было важно изучить кинетические закономерности накопления радикалов. Применение предложенранее принципа ного изучения газофазных реакций методом вымораживания радикалов с последующей регистрацией их спектрометром э.п.р. (7) позволило показать, что фотохимическое окисление углеводородов протекает С участием R и RO₂ радикалов (7, 8).

В данной работе указанным методом изучены кинетические закопомерности накопления перекисных радикалов и стабильных промежуточных продуктов в реакциях фотохимического сенсибилизированного парами ртути окисления метана и этана при 130 и 260°С и различных интенсивностях света. Опыты проводились на вакуумной струевой установке (рис. 1) в сочетании со спектрометром э.п.р. Смесь углеводорода с кислородом, предварительно насыщенная парами ртути, проходила через коаксиальный оптически прозрачный кварцевый реактор, облучаемый изнутри ртутно-кварцевой лампой ПРК-2. Небольшая часть газового потока из реактора вытягивалась через узкую диафрагму п с большой скоростью напускалась на пальцеобразный отросток, охлаждаемый жидким азотом. На этом отростке происходило вымораживание и накопление радикалов. Невымораживаемые газы откачивались насосом. С целью улучшения стабилизации радикалов к потоку газа после диафрагмы подмениивали углекислый газ в количествах, подбираемых экспериментально (⁸). Давление струи газового потока, омывающего охлажденную поверхность, не превышало 0.1 мм рт. ст.

Исходя из того, что в перенчном фотохимическом акте образуются также атомы водорода (RH + Hg* \rightarrow R + H + Hg), давление в реакторе подбирали таким, при котором исключалось бы образование радикалов HO₂ (по реакции H + O₂ + M). Опыты показали, что в смеси 90% H₂ и 10% O₂ при давлениях до 10 мм рт. ст. и времени вымораживания 10 мин. не накапливаются заметные количества HO₂. В этих условиях при облучении смеси метана или этана с кислородом (90% RH и 10% O₂) за то же время накапливаются значительные количества перекисных (RO₂) радикалов. Заметим, что в случае облучения углеводородов вероятность образования HO₂ в одинаковых условиях еще меньше, так как поперечник тушения у водорода гораздо больше (°). Исходя из этих результатов, все опыты по окислению углеводородов проводились со смесью, содержащей 90% RH и 10% O₂, при общем давлении в реактере 10 мм рт. ст.

Установка позволяла одновременно накапливать и молекулярные продукты реакции. Время накопления радикалов п молекулярных продуктов отличалось вдвое, так как вытягивание радикалов производилось с середины реактора. Как видно из рис. 2, стациопарная концентрация радикалов RO₂ устанавливается в течение 0,3 ÷ 0,6 сек. и это время, вопреки ожиданию, сохраняется практически неизменным при повышении температуры с 130 до 260°. Опыты по установлению зависимости концен-

Рис. 2. Кинетика накопления перекисных радикалов. $1 - C_2 H_5 OO^*$ и $2 - CH_3 OO^*$ при 131 (a) и 260° C (б)

трации перекисных радикалов от интенсивности света при тех же температурах показали, что при изменении последней в 8 раз (I_0 ; 0,33 I_0 и 0,13 I_0) концентрация радикалов изменяется пропорционально корню квадратному из интенсивности света.

Время установления стационарной концентрации радикалов RO₂ можно объяснить на основе теории цепных реакций (¹⁰), связывая его со временем установления длины цепи. Из цепного механизма фотохимического окисления парафиновых углеводородов (¹, ³, ⁴) следует, что $d[\text{RO}_2] / dt = w_0 - k_r[\text{RO}_2]$, откуда

$$[RO_2] = (w_0 / k_r (1 - e^{-k_r t}), \qquad (a)$$

где k_r — констапта скорости гибели радикалов RO₂ на поверхности реакционного сосуда, w_0 — скорость зарождения цепи, пропорциональная интенсивности света *I*. Таким образом, кинетика накопления RO₂ может быть описана выражением (а). Зная длину цепи v и пользуясь соотношением $t = \Delta \tau v$ (¹⁰), по дашным рис. 2 можно оценить $\Delta \tau$ — время элементарного акта, ответственного за развитие цепи. По данным (¹¹, ¹²) при 130° длина цепи v составляет 3 — 5 звеньев. Следовательно, $\Delta \tau = 0,06 \div 0,2$ сек. В условиях наших опытов [RH] = 2,25 · 10¹⁷ частиц / см³, поэтому если считать, что реакцией развития цепи является реакция (1), то для константы скорости k_1 получится значение 0,77 · 10⁻¹⁶ \div 0,22 · 10⁻¹⁶ см³ · • частиц⁻¹ · сек⁻¹. Предполагая предэкспонент копстанты k_1 равным 10^{-11} см³ · частиц⁻¹ · сек⁻¹ (¹), можно оценить энергию активации реакции (1), которая оказывается равной $9.5 \div 10.5$ ккал / моль. Отметим, что Н. Н. Семенов принимает (¹) энергию активации для этой реакции равной ~ 10 ккал / моль. Одпако в рамках рассматриваемой схемы трудно объяснить, почему не сокращаются времена установления стационарной концентрации радикалов RO₂ с повышением температуры (см. рис. 2a). Не согласуются с уравнением (а) и результаты, полученные по зависимости концентрации RO₂ от $I^{1/2}$ (рис. 2δ).

Наблюдаемые факты — образование всех продуктов реакции фотохимического сенсибилизированного парами ртути окисления метана и этана, пропорциональная зависимость стационарных копцентраций перекисных радикалов СН₃ОО и С₃Н₅ОО от $I^{\prime_{2}}$ и независимость времени их установления от температуры — могут быть объяснены также на основании радикальных реакций (¹³). Например:

0.
$$CH_4 + Hg^* \rightarrow CH_3 + H + Hg;$$

- I. $CH_3 \rightarrow O_2 \rightarrow CH_3OO; \ddagger$
- 11. $2CH_3OO \rightarrow 2CH_3O + O_2;$

III. $CH_3O + CH_3OO \rightarrow CH_3OOH + CH_2O;$

IV. $2CH_3O \rightarrow CH_3OH + CH_2O$.

Кинетическое уравнение накопления перекиспых радикалов

$$d[\mathrm{RO}_2] / dt = w_0 - \alpha [\mathrm{RO}_2]^2,$$

где $a = [8k_2k_4 - k_3^2 + k_3(k_3^2 + 16k_2k_4)^{\frac{1}{2}}]/4k_4$, откуда при граничных условнях [RO₂] = 0, когда t = 0, имеем

$$[\operatorname{RO}_2] = (w_0 / \alpha)^{\frac{1}{2}} [\exp\left(2\sqrt[7]{aw_0}t\right) - 1] / [\exp\left(2\sqrt[7]{aw_0}t\right) + 1].$$
 (6)

Легко убедиться, что выражения (а) и (б) предсказывают аналогичную картину накопления перекисных радикалов. Однако в данном случае

Рис. 3. Спектры э.п.р. перекисных радикалов CH_3OO^{\bullet} (131°) (*a*), $C_2H_5OO^{\bullet}$ (131°) (*б*), $C_2S_5OO^{\bullet}$ (260° C) (*в*), C_2H_5OO (при 27° С и низких давлениях в реакторе (*г*)

стационарная концентрация будет пропорциональна $w^{\frac{1}{2}}$, а следовательно $I^{\frac{1}{2}}$. Скорости образования продуктов как при цепном, так и при радикальном механизмах будут зависеть от интенсивности света в первой степени. Из соотношения (б) следует что время установления стационарной концентрации должно изменяться только при изменении интенсивности света, но не температуры. При **ЭТОМ** должно соблюдаться соотношение $I_2^{1/2} / I_1^{1/2} = t_1 / t_2$. Опыты показывают, что с увеличением интенсивности света это время действительно уменьшается по

указанному закону. Кроме того, в случае образования промежуточных продуктов реакции по радикальному механизму формальдегид должен быть в количествах больших, чем перекись. Этот вывод также подтверждается экспериментальными данными.

Спектры э.п.р. перекисных радикалов, полученные в данной работе (см. рис. 3), несколько отличаются от ранее полученных (⁷, ⁸). Следует

отметить, что в условиях работ (⁷, ⁸) опыты проводились при очень низких давлениях (0,1-1 мм рт. ст.) и малых интенсивностях света, поэтому концентрация перекисных радикалов была низкой и квадратичные реакции с заметной скоростью, по-видимому, не протекали. В данном случае наблюдаемое на спектрах расщепление (отмеченное на рисунке штрихом) можно связать с каложением спектров перекисных и алкоксильных радикалов. Действительно, как показано в (¹⁴), метоксильные и этоксильные радикалы имеют спектр э.п.р. синглетной формы. Интересно отметить, что в случае окисления этапа с повышением температуры в реакторе, расшепление на спектрах э.п.р. вымороженных радикалов увеличивается. По-впдимому, это связано с тем, что при высоких температурах может заметно протекать реакция (2) изомеризации и распада этильного перекисного радикала с образованием метоксильного радикала.

При увеличении давления наряду с I—IV могут протекать и другие возможные реакции:

V. $H + O_2 - M \rightarrow HO_2 + M$,

VI. $HO_2 + CH_3OO \rightarrow CH_3OOH + O_2$.

Этими реакциями можно объяснить возрастание выхода перекисей с повышением давления. Концентрация перекисных радикалов должна быть пропорциональна I^{*} . С повышением температуры и давления атомы водорода и спиртовые радикалы могут реагировать также с углеводородом, увеличивая выход продуктов с температурой (цепи). Кроме того, увеличение давления и температуры будут способствовать также ускорению реакций (1) и (2). Вероятность реакции (1) будет увеличиваться с уменьшением энергии связи С—Н в углеводородной молекуле (в частности, при переходе от метана к пропану). Увеличению вклада реакции (1) в образование перекисей будет способствовать также уменьшение интенсивности света. Перечисленные факторы могут быть причиной того, что при окислении пропана (³) и этана (¹⁵) в продуктах реакции (в условиях указанных работ) обнаруживаются в основном гидроперекиси.

Лаборатория химической физики Академии наук АрмССР Ереван Поступило 14 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Н. Семенов, О некоторых проблемах химической кинетики и реакционной способности, Изд. АН СССР, 1958. ² В. Я. Штерн, Механизм окисления углеводородов, М., 1960. ³ Н. В. Фок, А. Е. Налбандян, Сборн. Цепные реакции окисления углеводородов в газовой фазе, Изд. АН СССР, 1955, стр. 118. ⁴ А. И. Поройкова, А. А. Манташян, А. Е. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Е. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Б. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Б. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Б. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Б. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Б. Налбандян, Кинетика и катализ, 8, 1161 (1967). ⁵ М. Д. Мусеридзе, А. А. Манташян, А. Б. Налбандян, А. М. Анташян, А. Б. Налбандян, А. Б. Налбандян, А. А. Манташян, Т. А. Гарибян, Г. Л. Григорян и др., ДАН, 176, 866 (1967); Т. А. Гарибян, Г. Л. Григорян и др., ДАН, 176, 866 (1967); Т. А. Гарибян, А. Манташян, А. Б. Налбандян, ДАН, 186, № 5, 1114 (1969). ⁸ Т. А. Гарибян, А. А. Манташян, А. Б. Налбандян, ДАН, 186, № 5, 1114 (1969). ⁹ Дж. Калверт, Дж. Питтс, Фотохимия, М., 1968. ¹⁰ Н. Н. Семенов, Цепные реакции, 1934. ¹¹ А. А. Манташян, А. Б. Налбандян, Изв. АН АрмССР, сер. хим. наук, № 15, 3 (1962). ¹² А. А. Манташян, Кандидатская диссертация, ИХФ АН СССР, 1962. ¹³ W. S. Sleеру, J. G. Calvert, J. Ат. Сhem. Soc., 81, 769 (1959). ¹⁴ Т. А. Гарибяп, А. А. Манташян и др., Арм. хим. журн., 24, 113 (1971). ¹⁵ J. A. Gray, J. Chem. Soc., 1952, 3150.