УДК 541.1

ФИЗИЧЕСКАЯ ХИМИЯ

н. с. строкач, е. а. гастилович, д. н. шигорин

ИЗУЧЕНИЕ КОЛЕБАТЕЛЬНОЙ СТРУКТУРЫ КВАЗИЛИНЕЙЧАТОГО СПЕКТРА ИСПУСКАНИЯ И ЭЛЕКТРОННОКОЛЕБАТЕЛЬНЫХ ВЗАИМОДЕЙСТВИЙ В МОЛЕКУЛЕ 9,10-АНТРАХИНОНА

(Представлено академиком Я. М. Колотыркиным 1 IV 1971)

Квазилинейчатые спектры люминесценции 9,10-антрахинона в замороженных растворах *н*-углеводородов (77° К) были получены в (¹⁻⁴). Наблюдаемый переход, как показано в этих работах, является T - S-переходом $n\pi^*$ -типа. Анализ колебательной структуры спектра дается в (²), однако авторы этой работы, получив колебательные разности, из-за отсутствия необходимых данных по колебательным спектрам не смогли провести сопоставления с частотами нормальных колебаний. В настоящее время в связи с проведенным экспериментальным (⁵⁻⁹) и теоретическим (¹⁰⁻¹²) изучением колебательных спектров молекулы отнесение частот, измеренных в спектре фосфоресценции 9,10-антрахинона, к определенным типам симметрии нормальных колебаний представляется возможным.

Спектры люминесценции 9,10-антрахинона были получены фотоэлектрически на спектрометре ДФС-12 в н-гексане, н-гептане, н-октане при 77° К. Возбуждение осуществлялось светом ртутной лампы с λ 313 мµ. Полученный по методу Шпольского спектр 9,10-антрахинона имеет слабый по интенсивности О — О-переход и состоит из ряда полос разной интепсивности, повторяющихся через интервал, соответствующий полносимметричному валентному колебанию С=О-связи. Для самых интенсивных электронноколебательных полос отчетливо различаются четыре компоненты мультиплета, расстояния между которыми в н-гексане равны соответственно 74, 94 и 26 см-4. В табл. 1 приведены положения только двух самых интенсивных компонент для всех наблюдаемых в спектре полос в области 450-600 мµ, в качестве полосы чисто электронного перехода, как и в работе (²), бралась самая коротковолновая полоса в спектре. Очень низкая интенсивность О — О-полосы и отсутствие в спектре полносимметричных колебаний дают основание считать переход запрещенным не только по спину, но и по симметрии. Такой переход может разрешаться только в результате одновременного осуществления в молекуле спин-орбитальных и электронноколебательных взаимодействий (⁸).

Теоретико-групповое рассмотрение электронных конфигураций молекулы 9,10-антрахинона, принадлежащей к точечной группе D_{2h} , показывает, что триплетный уровень, с которого происходит испускание, может быть отнесен к следующим возможным типам симметрии: A_u , B_{1g} , B_{2g} , B_{3u} . В результате расчета электронной структуры 9,10-антрахинона в (⁸) было установлено, что низшими $\kappa\pi^*$ -электронными уровнями являются близкие по энергии уровни A_u и B_{1g} . Однако из двух переходов ${}^{3}A_u \rightarrow {}^{4}A_g$ и ${}^{3}B_{1g} \rightarrow {}^{4}A_g$ только последний запрещен в силу свойств пространственной симметрии, и, следовательно, только он может соответствовать наблюдаемому переходу в спектре испускания 9,10-антрахинона. Это позволяет говорить об энергетически более низком расположении электронного уровня ${}^{3}B_{1g}$ по сравнению с ${}^{3}A_u$. Таким образом, теоретический расчет электронной структуры и определенный нами из спектра люминесценции характер

Таблица 1*

Спектр люминесценции	9,10-антрахинона	в	н-гексане	(77°	Κ)
----------------------	------------------	---	-----------	------	---	---

			_		<u> </u>
1	2	3	4	5	
22211	0	2 2119	0	О о. сл. О—О	
22082	129	21989	134	131 о. сл. v ₁₇ a _u	
21968	243	21872	247	245 о. сл. 236 b _{1и}	
21830	381	21732	387	384 сл. 387 b _{2и}	
21651	560	21563	556	558 сл. 329 b _{3g} + 236 b _{1u}	
2149 0	721	21392	727	724 о. сл. 329 b _{3g} + 407 b _{1u}	
21273	938	21179	950	944 c. 935 b_{2u}	
21098	1113	2 1009	1125	1119 c. 329 $b_{3g} + 792 \ b_{1u}$	
20913	1298	20821	1298	1298 о. сл. 1285 b _{2и}	
20726	1485	2 062 7	1492	1489 cp. 1475 b_{2u} $683b_{3g} + 792b_{1u}$	
20607	1604	2 0507	1612	1 608 cp. 1 575 b _{2u}	
20212	1999	20118	2001	2000 o. c. 329 $b_{3g} + 1676 b_{1u}$	
19850	2361	19747	2372	2367 c. 683 $b_{3g} + 1676 \ b_{1u}$	
19594	2617	19496	2 623	2620 c. 935 b_{2u} + 1671 a_g	
19424	2787	19328	2791	2789 c. 329 b_{3g} + 792 b_{1u} + 1671 a_g	
19243	2968	19134	2985	2977 о. сл. 1285 $b_{2u} + 1671 a_g$	
19054	3157	18957	3 162	3160 cp. 1475 $b_{2u} + 1671 a_g$	
				683 $b_{3g} + 792 \ b_{1u} + 1671 \ a_g$	
1903 2	3179	18942	3177	3178 c. $v_{53}b_{3g} + 1676 b_{1u}$	
18942	3269	-		3269 1575 $b_{2u} + 1671 a_g$	
18545	3 666	18461	3658	3662 c. 329 $b_{3g} + 1676 \ b_{1u} + 1671 \ a_g$	
18177	4034	18081	4038	4036 cp. 683 b_{3g} + 1676 b_{1u} + 1671 a_g	
17932	4279	17833	4286	4283 cp. 935 $b_{2u} + 1671 a_g$	imes 2
17763	4448	17666	4453	4450 cp. 329 $b_{3g} + 792 \ b_{1u} + 1671 \ a_g$	$ imes 2^{\cdot}$
	_	17475	4644	4644 о. сл. 1285 b _{2u} + 1671 a _g	$\times 2$
17393	4818	17302	4817	4818 сл. 1475 $b_{2u} + 1671 a_g$	imes 2
				683 $b_{3g} + 792 \ b_{1u} + 1671 \ a_g$	$\times 2$
17378	4833	17279	4838	4835 cp. $v_{53}b_{3g} + 1676 \ b_{1u} + 1671 \ a_g$	
17279	4932	_	_	4932 1575 $b_{2u} + 1671 a_g$	imes 2
16895	5316	16803	5316	5316 c. 329 $b_{3g} + 1676 \ b_{1u} + 1671 \ a_g$	imes 2

* 1,3 — положение полос двух последовательностей (в см⁻¹), 2,4 — разности, вычисленные от начала полосы (в см⁻¹), 5 — интерпретация.

электронного перехода козволяют отнести низший *п*л*-триплетный уровень в молекуле 9,10-антрахинона к *B*_{1g}-типу симметрии.

Для выяснения механизмов осуществляющихся в молекуле взаимодействий, приводящих к разрешению перехода ${}^{3}B_{1g} \rightarrow {}^{4}A_{g}$, следует использовать следующие экспериментальные результаты. В (10) показано, что поляризация основных электронноколебательных полос в спектре фосфоресценции одинакова. С другой стороны, из изучения поляризованных спектров S - T-поглощения в кристалле 9,10-антрахинона (11) получено, что дипольный момент перехода лежит в плоскости молекулы параллельно С=О-связям (ось Z совпадает с направлением С=О-связей, ось X — перпендикулярна плоскости молекулы). Это дает основание считать электронноколебательные полосы, наблюдаемые в спектре люминесцепции, преимущественно поляризованными вдоль оси Z. Следовательно, переход с ${}^{3}B_{1g}$ уровня в основное состояние будет осуществляться благодаря заимствованию интенсивности из разрешенного правилами отбора по симметрии перехода ${}^{1}B_{1u}(\pi\pi^*) \rightarrow {}^{4}A_{g}$. Далее, предложенное нами отнесение измеренных в спектре люминесценции частот, в основном представляющих комбинации частот b_{3g} и b_{1u} -типов, к колебаниям b_{2u} -типа симметрии (см. табл. 1) свидетельствует об активной роли колебаний этого типа симметрии в возникающих в молекуле взаимодействиях. На основании этих результатов для 9,10-антрахинона могут быть предложены следующие возможные механизмы возникновения электронноколебательных полос в спектре. Низший ${}^{3}B_{1g}(n\pi^{*})$ электронный уровень смешивается с уровнем ${}^{4}B_{1u}(\pi\pi^{*})$ (примешиванием к основному состоянию пренебрегаем (12)) либо непосредственно в результате спин-электронноколебательных взаимодействий (в первом порядке теории возмущения), либо с помощью промежуточных уровней ${}^{1}B_{3g}(\pi\pi^{*})$ и ${}^{3}B_{3u}(n\pi^{*})$ (во втором порядке) с участием колебаний b_{2u} типа симметрии. Оператор спин-орбитального взаимодействия при этом преобразуется по неприводимому представлению B_{2g} (теоретико-групповое рассмотрение показывает, что эффективными в перекрывании *n*- и π -электронных оболочек в молекуле 9,10-антрахинона являются $\Gamma(H_{cn-op6}) = B_{1g}$ и B_{2g}).

Из двух возможных промежуточных уровней ${}^{1}B_{3g}(\pi\pi^{*})$ и ${}^{3}B_{3u}(n\pi^{*})$ эффективным в смешивании электронных уровней ${}^{3}B_{1g}(n\pi^{*})$ и ${}^{1}B_{1u}(\pi\pi^{*})$ будет только самый низший из синглетных $\pi\pi^{*}$ -уровней молекулы ${}^{1}B_{3g}$ (9 , 13). Электронный уровень ${}^{3}B_{3u}$ ($n\pi^{*}$) можно не рассматривать ответственным за такое смешивание в связи с его высоким энергетическим расположением в соответствии с расчетом в (9). Следует отметить, что оценки матричных элементов спин-орбитальных, электронноколебательных и спип-электронноколебательных взаимодействий (8 , 14) не позволяют судить о преимущественной роли механизмов, описываемых первым и вторым порядками теории возмущения.

Остановимся несколько подребнее на выполненном нами анализе колебательной структуры свектра 9,10-антрахинона. Колебательные полосы фосфоресценции 384, 944, 1489 и 1608 см-1 могут быть отпесены к колебаниям b_{2u} -типа симметрии с частотами соответственно 387 (изгиб C=O) 935 (деф), 1475 (вал С—С) и 1575 см⁻¹ (вал С—С). Несколько большое расхождение с частотой и.-к. спектра для последней колебательной полосы, по-видимому, можно объяснить трудностью определения положений ее компонент, одна из них проявляется в виде небольшого перегиба на полосе 1489 см⁻¹, другая — представляет довольно широкую полосу, возможно, состоящую из двух (или более) накладывающихся одна на другую полос. Самую интенсивную электронноколебательную полосу в спектре 2000 см⁻¹ мы интерпретируем как комбинацию частоты неполносимметричного валентного колебания С=О-связи 1676 см⁻¹ (b₁, тип симметрии) и отнесенной к b_{зд}-типу частоты 329 см⁻¹, измеренной в спектре комбинационного рассеяния в (⁵). Полосы 558, 724 и 1119 см⁻¹ могут быть пред-ставлены как комбинации этой же частоты 329 см⁻¹, которая в b_{3g} -типе симметрии может быть отнесена либо к изгибу С=О-связи, либо к деформационному колебанию, с частотами b_{1и}-типа симметрии соответственно 236 (деф), 407 (деф), 792 см⁻¹ (деф) (полоса 407 см⁻¹ отнесена к b_{iu} в работе (⁶)). Интенсивные полосы 2367 и 3178 см⁻¹ по аналогии с полосой 2000 см⁻¹ можно также интерпретировать как комбинации частоты 1676 см⁻¹ b_{1u} -типа с частотами \bar{b}_{3g} -типа симметрии 683 см⁻¹ и v_{53} соответственно. Полосу 683 см⁻¹ мы отнесли к b_{3g}-типу, в работах (⁵) она была отнесена к полносимметричному колебанию, только исходя из рассмотрения интенсивности полос; в работе же (⁶), где проводились поляризационные измерения, степень поляризации этой полосы не была определена. Частоте v₅₃ соответствует рассчитанное значение в (7), однако ей не удается сопоставить экспериментальную частоту среди частот, измеренных в работах (⁵). Самые коротковолновые очень слабые по интенсивности полосы 131 и 245 см⁻¹, по-видимому, можно рассматривать как запрещенные правилами отбора по симметрии, но проявляющиеся в спектре с очень низкой интенсивностью. Они отнесены нами к самым низким деформационным колебаниям a_u ($\Gamma(H_{cn-op6}) = B_{2g}$; поляризация по оси X) и b_{iu} ($\Gamma(H_{cn-op6}) =$ $= B_{1g}$; поляризация по оси Z) типов симметрии (⁷).

Очењь слабой полосе 1298 см⁻¹ спектра люминесценции можно сопоставить частоту 1285 см⁻¹, измеренную в и.-к. спектре (⁵); она может быть, как отмечалось в (⁷), отнесена и к b_{2u} -типу (см. табл. 1), и к b_{1u} -типу. Последнее будет отвечать запрещенной по симметрии электронноколебательной полосе, которая будет проявляться в спектре аналогично полосам 131 и 245 см⁻¹ с очень низкой интенсивностью.

Физико-химический институт им. Л. Я. Карпова Москва

Поступило 15 III 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Д. Н. Шигорин, Н. А. Щеглова и др., ДАН, **120**, 1242 (1958); Изв. АН СССР, сер. физ., **23**, 37 (1959). ² Р. Н. Нурмухаметов, Д. Н. Шигорин, ЖФХ, **35**, 72 (1961). ³ А. Киboyama, Bull. Chem. Soc. Japan, **43**, 3373 (1970). ⁴ Д. Н. Ши-горин, Н. А. Щеглова и др., Изв. АН СССР, сер. физ., **34**, 1343 (1970). ⁵ С. Ре-cile, B. Lunelli, J. Chem. Phys., **46**, 2109 (1967); S. N. Singh, R. S. Singh, Spectrochim. acta, **24A**, 1591 (1968); F. Stenman, J. Chem. Phys., **51**, 3413 (1969); V. E. Gazis, P. Heim, Tetrahedron Letters, **13**, 1485 (1967). ⁶ V. E. Gazis, P. He-im et al., Spectrochim. acta, **26A**, 497 (1970). ⁷ Н. С. Строкач, Е. А. Гастило-вич, Д. Н. Шигорин, Оптика и спектроскопия, **30**, 43 (1971); **30**, 433 (1971); **32**, 59 (1972). ⁸ Р. Хохштрассер, Молекулярные аспекты симметрии, М., 1968. ⁹ T. G. E dwards, R. Grinter, Mol. Phys., **15**, 357 (1968). ¹⁰ J. D. Scott, W. H. Wat-son, J. Chem. Phys., **45**, 4363 (1966). ¹² L. Goodman, V. G. Krisha, J. Chem. Phys., **37**, 2721 (1962). ¹³ А. Киboyama, K. Wada, Bull. Chem. Soc. Japan, **39**, 1874 (1966); C. Leibovici, J. Deshamps, Theoret. chim. acta, 4, 321 (1966); T. G. Edwards, R. Grinter, Mol. Phys., **15**, 357 (1968). ¹⁴ A. C. Albrecht, J. Chem. Phys., **38**, 354 (1963).