УДК 541.183.5

Академик АН ГрузССР Г. В. ЦИЦИШВИЛИ, М. К. ЧАРКВИАНИ

СОСТОЯНИЕ ВОДЫ В ГИДРОСОДАЛИТЕ ПО ДАННЫМ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ

Кристаллический алюмосиликат гидросодалит имеет общий с некоторыми цеолитами основной строительный блок — кремний-алюминиевый кубооктаэдр, так называемую содалитовую ячейку. Различие цеолитов типа А и фожазита заключается главным образом в порядке соединения указанных кубооктаэдров между собой. В идеальной структуре гидросодалита пространство сплошь заполнено кубооктаэдрическими ячейками, в которых и сосредоточен основной сорбционный объем. Структурное сходство гидросодалита с цеолитами типа А и фожазита делает интересным исследование его и.-к. спектров в первую очередь в связи с вопросом о состоянии воды в молекулярных ситах.

И.-к. сцектры образцов гидросодалита исследовались в кварцевой кювете с окошками из КВг. Примененная нами кювета позволяет производить вакуумирование образцов при высоких температурах вплоть до 700— 800° С и остаточном давлении газов меньше 10⁻⁵ тор. Запись и.-к. спектров производилась после охлаждения образцов до комнатной температуры в вакууме. Гидросодалит предварительно размельчался в вибромельнице, после чего производилось его осаждение из аэрозоля с целью отбора наиболее тонкодисперсной фракции. Полученный осадок прессовался в таблетки под давлением 4 т/см². «Толщина» таблеток составляла 10—20 мг/см².

Образцы исследованного нами гидросодалита представляли собой белые мелкокристаллические порошки, полученные синтетически в Лаборатории физической химии Института физической и органической химии АН ГрузССР. Их и.-к. спектры в таблетках с КВг хорошо совпадают со спектром, приведенным в (¹) для гидросодалита в области частот колебаний скелета. Следует отметить, что после проведенных с исследованными образцами довольно жестких процедур (прессование, длительное вакуумпрование вплоть до 700°) в их и.-к. сректрах в диапазоне 400—4000 см⁻¹ не произошло никаких заметных изменений, что свидетельствует о сохранении исходной кристаллической структуры.

И.-к. спектры записывались на спектрофотометре UR-10 фирмы Цейс. Спектральная ширина щели находилась в пределах 2-3 см⁻¹, а точность. определения частот для узких полос составляла 1-3 см⁻¹. В н.-к. спектре гидросодалита, спрессованного в тонкие таблетки (менее 10 мг/см²), после вакуумирования при температурах выше 200° в области валентных колебаний (о.в.к.) воды полосы не наблюдались. Однако в более толстых образцах после откачки при 200° отчетливо проявляются две слабые и узкие полосы с частотами 3701 и 3740 см⁻¹ и более широкие полосы 3610 и 3530 см⁻¹ (рис. 1a). Эффективная оптическая плотность указанных полос весьма мала, по-видимому, вследствие значительного рассеяния излучения образцом в этой области спектра, что обусловлено соразмерностью величин среднего диаметра частиц таблетки с длиной волны света. В то же время в области деформационных колебаний (о.д.к.) воды рассеяние образцом ночти не имеет места, и поэтому нолосы здесь выглядят относительно более интенсивными. В этой области проявляются полосы 1590, 1618 и 1650 см⁻¹.

После вакуумирования при 300° полосы 3610 и 3530 см⁻¹ исчезают из спектра, полоса же 3701 см⁻¹ заметно интенсивнее полосы 3740 см⁻¹, одна-

УДК 541.183.5

Академик АН ГрузССР Г. В. ЦИЦИШВИЛИ, М. К. ЧАРКВИАНИ

СОСТОЯНИЕ ВОДЫ В ГИДРОСОДАЛИТЕ ПО ДАННЫМ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ

Кристаллический алюмосиликат гидросодалит имеет общий с некоторыми цеолитами основной строительный блок — кремний-алюминиевый кубооктаэдр, так называемую содалитовую ячейку. Различие цеолитов типа А и фожазита заключается главным образом в порядке соединения указанных кубооктаэдров между собой. В идеальной структуре гидросодалита пространство сплошь заполнено кубооктаэдрическими ячейками, в которых и сосредоточен основной сорбционный объем. Структурное сходство гидросодалита с цеолитами типа А и фожазита делает интересным исследование его и.-к. спектров в первую очередь в связи с вопросом о состоянии воды в молекулярных ситах.

И.-к. спектры образцов гидросодалита исследовались в кварцевой кювете с окошками из КВг. Примененная нами кювета позволяет производить вакуумирование образцов при высоких температурах вплоть до 700— 800° С и остаточном давлении газов меньше 10⁻⁵ тор. Запись и.-к. спектров производилась после охлаждения образцов до комнатной температуры в вакууме. Гидросодалит предварительно размельчался в вибромельнице, после чего производилось его осаждение из аэрозоля с целью отбора напболее тонкодисперсной фракции. Полученный осадок прессовался в таблетки под давлением 4 т/см². «Толщина» таблеток составляла 10—20 мг/см².

Образцы исследованного нами гидросодалита представляли собой белые мелкокристаллические порошки, полученные синтетически в Лаборатории физической химии Института физической и органической химии АН ГрузССР. Их и.-к. спектры в таблетках с КВг хорошо совпадают со спектром, приведенным в (¹) для гидросодалита в области частот колебаний скелета. Следует отметить, что после проведенных с исследованными образцами довольно жестких процедур (прессование, длительное вакуумирование вплоть до 700°) в их и.-к. сректрах в диапазоне 400—4000 см⁻¹ не произошло никаких заметных изменений, что свидетельствует о сохранении исходной кристаллической структуры.

И.-к. спектры заиисывались на спектрофотометре UR-10 фирмы Цейс. Спектральная ширина щели находилась в пределах 2-3 см⁻¹, а точность. определения частот для узких полос составляла 1-3 см⁻¹. В н.-к. спектре гидросодалита, спрессованного в тонкие таблетки (менее 10 мг/см²), после вакуумирования при температурах выше 200° в области валентных колебаний (о.в.к.) воды полосы не наблюдались. Однако в более толстых образцах после откачки при 200° отчетливо проявляются две слабые и узкие полосы с частотами 3701 и 3740 см⁻¹ и более широкие полосы 3610 и 3530 см⁻¹ (рис. 1a). Эффективная оптическая плотность указанных полос весьма мала, по-видимому, вследствие значительного рассеяния излучения образцом в этой области спектра, что обусловлено соразмерностью величин среднего диаметра частиц таблетки с длиной волны света. В то же время в области деформационных колебаний (о.д.к.) воды рассеяние образцом почти не имеет места, и поэтому полосы здесь выглядят относительно более интенсивными. В этой области проявляются полосы 1590, 1618 и 1650 см⁻¹.

После вакуумирования при 300° полосы 3610 и 3530 см⁻¹ исчезают из спектра, полоса же 3701 см⁻¹ заметно интенсивнее полосы 3740 см⁻¹, одна-

ко уже после откачки при 400° картина меняется. Дальнейшее повышение температуры вакуумирования до 500° ведет к практически полному исчезновению полосы 3701 см⁻¹, тогда как пик 3746 см⁻¹ почти не претерпевает изменений. Последний с несколько уменьшенной интенсивностью наблюдается даже после откачки при 600° в течение 2 час. (рис. 1*a*).

С целью уточнения и дополнения опытных данных были изучены также и.-к. спектры адсорбированной на гидросодалите тяжеловодородной воды (D₂O), о.в.к. которой приходится на более благоприятный участок спектра

Рис. 1. И.-к. спектры поглощения гидросодалита после вакуумпрования (a) в течение 2 час. и при десорбции D₂O после вакуумирования (б) в течение 2 час. при разных температурах (°C): I - 100; 2 - 200; 3 - 300; 4 - 400, 5 - 500; 6 - 600

с меньшим рассеянием излучения образцом. Для этого образец спачала вакуумировался в течение 4 час. при 600°, после чего температура его понижалась до комнатной и впускались пары D₂O под давлением 4 тор. В этих условиях образец выдерживали сутки, а затем откачивали в течение 2 час. при разных температурах перед съемкой спектров.

В случае D_2O спектры в о.в.к. в существенных чертах повторяют таковые для адсорбированной H_2O . Так, после откачки при 200° наблюдаются слабые иолосы 2751, 2720, 2660 и 2580 см⁻¹ (рис. 16). Одпако уже после вакуумирования при 300° последние три полосы становятся едва заметными, тогда как первая даже несколько усиливается и наблюдается вплоть до 500°. К сожалению, о.д.к. молекулы D_2O приходится на область сильного поглощения остова гидросодалита, вследствие чего исследование ее пе представляется возможным. По последовательности частот, интенсивностям, контурам и температурной зависимости нетрудно установить связь между полосами 3746, 3701, 3610 и 3530 см⁻¹, принадлежащими H_2O , и полосами 2751, 2720, 2660 и 2580 см⁻¹ соответственно, принадлежащими D_2O .

Для установления соответствия между полосами в о.в.к. и о.д.к. адсорбированной гидросодалитом воды были сопоставлены температурные зависимости их оптических плотностей (²). Связь, близкая к пропорциональности, наблюдается для пары 3746 и 1590 см⁻¹ и пары 3701 и 1618 см⁻¹. По устоявшемуся мнению, полосы в области выше 3700 см⁻¹ в алюмосиликатах и, в частности, цеолитах обычно безоговорочно принисываются исключительно только свободным гидроксильным группам поверхности. Однако в большинстве работ не проводилось одновременного исследования о.д.к., что является обязательным условием строгого отпессния наблюдавшихся полос к молекулам воды или гидроксилам. Из наших дапных следует, что рассматриваемая полоса (по крайней мере часть ее интенсивности, если происходит наложение двух полос) должна быть отнесена к молекулам воды, поскольку частота соответствующего деформационного колебания находится в области, характерной именно для последних, а не для гидроксилов (², ³).

Частоты 3746 (2751 для D_2O) и 1590 см⁻¹ близки к таковым для водяного пара при низком давлении (⁴) и свидетельствуют об отсутствии взаимной водородной связи между молекулами воды этого типа. В структуре типа гидросодалита, состоящей сплошь из кремний-алюминиевых кубооктаэдрических ячеек, вода, удерживаемая вилоть до такой высокой температуры, как 700°, может содержаться только лишь в этих полостях. Из сказанного следует, что полосы 3746 и 1590 см⁻¹, по-видимому, принадлежат мономерным молекулам воды, находящимся в содалитовых ячейках и связанным с катионом патрия посредством атома кислорода.

Пара полос 3701 (2720 для D_2O) и 1618 см⁻¹, наблюдающаяся в спектрах гидросодалита до 400°, должна быть приписана молекулам воды, которые также могут быть лекализованы только в содалитовых полостях. Исходя из положения этих полос, а также конкурентной связи между их интенсивностями и интенсивностями полос мономерной воды при температурной десорбции воды из гидросодалита в интервале 200—400° (рис. 1*a* и *б*), указанные полосы следует отнести к димерам H_2O . Что касается пары полос 3610 (2660 для D_2O) и 1650 см⁻¹, а также пары 3530 (2580 для D_2O) и 1650 см⁻¹, то их предположительно можно отнести к тримерам и тетрамерам H_2O соответственно, также локализованным в содалитовых полостях. Согласно данным (⁵, ⁶), кубооктаэдрическая полость гидросодалита может вместить не более четырех молекул воды.

Описаппая картина во многом напоминает и.-к. спектры воды в кристаллической матрице твердого азота при глубоком охлаждении (⁷). В обоих случаях коэффициент поглощения мономера H_2O относительно выше в о.д.к., чем в о.в.к. воды по сравнению с таковым для димера H_2O . Анализ полученых экспериментальных данных свидетельствует, что наиболее. прочно (до 700°) гидросодалитом удерживаются одиночные (мономерные) молекулы H_2O , а с повышением степени ассоциации указанных молекул температура их десорбции (или разрушения ассоциатов) понижается.

Частоты 3746 (2751 для D_2O) и 1590 см⁻¹, как отмечалось выше, свидетельствуют о малом возмущении соответствующих молекул воды, но, с другой стороны, очень высокая температура дегидратации, казалось бы, свидетельствует, наоборот, о прочной связи с решеткой. Указанное противоречие устраняется, если учесть, что диаметр входного окна содалитовой ячейки в гидросодалите (2,3 Å по (⁸)) несколько меньше критического диаметра молекулы воды (2,8 Å), и что поэтому молекулы воды удерживаются внутри полости, скорее всего, не за счет большой энергии адсорбция, а вследствие геометрического фактора. Следует отметить, что такие адсорбенты, как окись алюминия и силикагель не характеризуются п.-к. полосой поглощения 1590 см⁻¹ (⁹, ¹⁹). Таким образом, рассматриваемое состояние воды является специфическим именно для кристаллических адсорбен-

10 ДАН, т. 202, № 1

145

тов, содержащих в своей структуре содалитовые ячейки. Вода попадает в малые полости, по-видимому, в процессе синтеза гидросодалита и цеолитов. Эти полости играют роль надежных ловушек для одиночных молекул воды вплоть до высоких температур. Выражение «сильно связанная вода» в этом случае является не вполне точным.

Еще одно веское доказательство принадлежности полос 3746 и 1590 см⁻¹ молекулам воды, локализованным в содалитовых полостях, дают опыты по регидратации откачанного при 700° образца гидросодалита. При низких давлениях водяного пара (порядка 0,9 тор) и комнатной температуре восстановить эти полосы не удается. И лишь при длительном воздействии паров воды при более высоком давлении (4 тор) и 400° происходит некоторое усиление полос 3746 и 1590 см⁻¹, однако полного восстановления их исходной интенсивности не наблюдается. Известно, что в случае природного содалита для лостижения адсорбционного равновесия с парами воды необходимы месяцы (¹¹).

Иначе ведут себя более слабо связанные (полимерные) молекулы воды. После регидратации уже при комнатной температуре в спектре появляются соответствующие полосы при 3530, 3610 и 1650 см⁻¹, довольно точно совпадающие с таковыми в исходных дегидратированных не выше 200° образцах гидросодалита. Из наших опытов по регидратации гидросодалита совершенно однозначно следует, что так называемая прочно связанная вода удерживается в нем не из-за высокого адсорбционного сродства, а главным образом вследствие пространственных затруднений, испытываемых молекулами воды при выходе из малых полостей.

Институт физической и органической химии Академии наук ГрузССР Тбилиси Поступило 28 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Е. М. Flanigen, H. Khatami, H. A. Szymanski, H Intern. Conf. on Molecular Sieve Zeolites (Preprints), Worcester, 1970. ² Г. В. Юхневич, В сборн. Связанная вода в дисперсных системах, в. 1, М., 1970. ³ Г. В. Юхневич, Усп. хим., 32, 1397 (1963). ⁴ W. S. Benedict, J. Chem. Phys., 24, 1139 (1956). ⁵ С.П. Жданов, И. Н. Бунтарь, Е. Н. Егорова, ДАН, 154, 419 (1964). ⁶ Т. Н. Шишакова, М. М. Дубинин, Изв. АН СССР, сер. хим., 1966, 2020. ⁷ М. Van Thiel, Е. D. Becker, J. C. Pimentel, J. Chem. Phys., 27, 486 (1957). ⁸ Т. Н. Шишакова, М. М. Дубинин, Изв. АН СССР, сер. хим., 1965, 1303. ⁹ Л. А. Игнатьева, Г. Д. Чукин, Г. В. Бондаренко, ДАН, 181, 393 (1968). ¹⁰ Г. Д. Чукин, Л. А. Игнатьева, Журн. прикл. спектроскоп., 8, 872 (1968). ¹¹ R. М. Вагrer, А. F. Dennay, J. Chem. Soc., 1964, 4684.