УДК 548.736

В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

РАСШИФРОВКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ СОЕДИНЕНИЙ С НЕИЗВЕСТНОЙ ХИМИЧЕСКОЙ ФОРМУЛОЙ

Итоги кристаллоструктурных расшифровок достаточно часто заставляют дополнять результаты химического анализа, дающего валовую химическую формулу: либо уточнять последнюю, либо раскрывать, осмысливать ее стереохимию, особенно при исследовании сложных минералов с бесконечными в одном, двух, трех измерениях анионными радикалами.

Развитие промышленного синтеза монокристаллов предоставляет структурщикам разнообразные объекты, но в большинстве случаев монокрис-

таллы дискретных фаз пока фиксируются (среди общей массы конечного продукта) в количествах, достаточных лишь для рентгеновской съемки *. Невозможность количественного (полного) химического анализа вынуждает обратиться лишь к более качественным данным электропного зонда или спектрального анализа о химических элементах, участвующих в структурном мотиве (в элементарной ячейке), и до последнего времени подобные объекты с неустановлепной химической формулой исключались из детального рассмотрения.

Предложенный вероятностный подход к функции Патерсона (¹) позволяет наметить последовательные шаги расшифровки кристаллических структур

N	>V				h/2
177	7/0 7/8,5	26/15	15/5	,5	\$/0
30	15 14	/0 10/0 12/10	25/0	5/5,5	75/10
¥ U	•17/8•11/15	2/10•	• 6/0 • 4/8	3/5 •	14/0 10/1 5
	•5/15 - 20/1 4/9	⁵ ●5/7 7/0 a 17/n	26/15	•17/15	12/5 15/0
	4/10 2/5,5	•2/8 •11/5,5 •2/8 •	s <i>n/n</i> 5	2/0° 3/0	0/15
	•3/5	014/11		•31/0	e l
	12/4 •• 4 10/15	13,5 2/10• 1	• [•] 4/75 • 7/0 4/0	14/7	/5
n	15/15 24/5	5 11/0 16/6 1	6/15 37/15	3/10,5 52/	/15
ω,	~~7/0 1L	1/10		31/0	-, .

Рис. 1. К.Ч-силикат. *Р*(*uvw*). Числитель дроби — относительная мощность пика, зпаменатель — координата *w* в ¹/₃₀ долях оси *с*

соединений без знания их точной химической формулы. Весьма существенно, что для проведения несбходимых вероятностных оценок достаточны сведения о геометрии ячейки и о рассеивающих способностях атомов, ее заселяющих. На первом этапе * по концентрации с патерсоновских максимумов устанавливается вероятное общее количество атомов в ячейке N, а также число легких атомов, приходящихся на один тяжелый $(n/m, \text{ см. (}^1))$. Рассчитав амылитуды межатомных векторов A_{xx} (3), по рецептам (1) приходим к величине патерсоновского фона Φ и к вероятности обнаружения среди него конкретных векторов **. Далее, сравнение достоверно фиксируемой амилитуде $\delta p(M)$ и относительной δp (из реальной функции Патерсона) совместно с критерием дискретности M позволяет оценить кратность пиков (в простейшем случае идентифицировать их) и выбрать оптимальный алгоритм для расшифровки функции Патерсона ($^{3-5}$, *).

Разбираемые ниже два примера конкретно иллюстрируют этаны изложенного подхода, и можно надеяться, что прямой рентгеноструктурный анализ станет хорошим подспорьем для аналитика при установлении химической формулы соединений.

 ^{*} Подобная ситуация паиболее характерпа для процессов пизко (высоко) температурного гидротермального синтеза (гидратация минералов цементного клинкера, гидротермальная кристаллизация в системах A₂O — Me_xO_y — SiO₂ (GeO₂) — H₂O п т. д.).
 ** Приведенные в абсолютной шкале — по нулевому патерсоновскому пику (³).

Номер чет- верки	Значение функции P(uvw) в макси- муме	u	v	w	Номер чет- верки	Значение функции P(uvw) в макси- муме	u	v	w
1	22 16 26 11	16 16 14 14	6 24 19 10,6	0 9 15 5,5	7	4 15 11 3	14 14 15,5 15,5		10 0 15 5
2	14 31 26 12	21,2 21,5 8,5 8,5	8,5 21,5 3,5 26,5	11 0 15 5	8	7 4 3 7	8,5 8,5 21 21	$\begin{array}{c} 14\\16\\2\\28\end{array}$	0 8 5 15
3	25 16 12 37	0 15 0 15	17,5 12,5 12,5 12,5 17,5	0 6 10 15	9	11 14 5 3	30 0 0 30	7 7 23 23	0 15 5,5 10,5
4	10 31 15 25	, 15 15 0 0	$ \begin{array}{r} 6 \\ 24 \\ 20 \\ 10,4 \end{array} $	10 0 5,5 15	10	$\begin{array}{c} 6\\ 2\\ 3\\ 10\end{array}$	6 6 24 24	16 14 27 3	$0\\10\\5\\5$
5	$\begin{array}{c}2\\16\\3\\4\end{array}$	16 16 14 14		5,5 9 0 9	11	$\begin{array}{c} 3\\11\\7\\2\end{array}$	7 7 23 23	$27 \\ 3 \\ 16 \\ 14$	5 15 0 10
6	5 11 30 14	9 9 21 21	9 21 21 9	7 15 0 10					

К, Y-силикат. Четверки пиков взаимодействия в рамках ф. г. *P2*₁ *nb* (*u*, *v* — *b* ¹/₆₀, *w* — *b* ¹/₃₀ долях осей ячейки)

I. Первой кристаллической фазой, структура которой расшифрована без знания химической формулы, был продукт гидротермальных реакций в системе K₂O — Y₂O₃ — SiO₂ — H₂O (⁶). Спектральный анализ указывал на наличие в этой фазе K, Y, Si. В отсутствие количественного химического анализа (из-за малого количества вещества) не представлялось возможным фиксировать конкретные значения подстрочных индексов в формуле $K_p Y_q Si_r O_s \cdot (H_2 O)_n$. Параметры ромбической ячейки a = 13,536; b == 13,170; c = 5,867 Å; рентгеновская группа mmP - nb включает две федоровских (ф.г.): Pmnb и P2₁nb. Расшифровка функции P(uvw) выполнялась параллельно в рамках обеих групп; хотя ряд векторов и указывал на голоэдрию, но казалось неосторожным сразу отбросить ф.г. P2, nb, тем более, что в процессе расшифровки нужно было установить не столько координаты атомов, сколько вообще определить их число (и сортность) в ячейке. На первом этапе анализа предполагавшиеся атомы были разбиты на три группы: А (\equiv Y), В (К и Si, $Z_{cp} = 15$) и Х (О, ОН, H_2O ; $Z_{\rm cp} = 8$).

Исходя из $V_{\pi\pi} = 1045$ Å³ и c = 5 (см. (¹)), можно было принять, что в ячейке содержится ~70-80 атомов; в том числе один — два независимых атома типа А ($t = Z_{\pi}/Z_{\pi} \approx 5$) и 3-4 атома типа В ($t \sim 2-2,5$) (¹). При сделанных допущениях ($N \sim 70-80$, $m_{A} \sim 4$, $m_{B} \sim 10-12$, $n \sim 55-65$) были вычислены величины общего фона ($\Phi_{3} \simeq 120$ абс. ед.) и показателя (M) вероятности обнаружения векторов A_{AA} (M = 17), A_{AB} (M = 5), A_{AX} (M = 2-2,5), A_{BB} (M = 2-1,8). Оказалось, что достоверно можно фиксировать лишь патерсоновские пики A_{AA} и A_{AB} ; векторы A_{AX} и A_{BB} определялись с меньшей вероятностью, а A_{XX} и A_{BX} тонули в общем фоне. Тем самым, наиболее «мощные» четверки пиков на P(uvw)(рис. 1, табл. 1) могли быть отнесены лишь к векторам взаимодействия 326 A_{AA} и A_{AB} . Оставшиеся достаточно сильные пики, но не удовлетворяющие условиях набора пиков взаимодействия по (³), а также расположенные в частных положениях (0 $^{1}/_{2}w$, $^{1}/_{2} ^{1}/_{2}w$, $uv^{1}/_{2}$) можно было принять за харкеровские пики A_{AA} и A_{BB} .

Совместный анализ закономерностей расположения пиков обоих сортов (³, ⁴) с учетом их относительных мощпостей приводил к заключению о наличии в ячейке одного квартета (связки по (³)) тяжелых атомов (кратность $k_0 = 4$). В аналогичных квартетах зафиксированы две четверки «средних» атомов В. Остальные В-атомы либо занимали четыре четырехкратных положения в рамках ф.г. $P2_1nb$, либо два восьмикратных — в рамках Pmnb. В последнем — голоэдрическом — варианте четверки пиков № 10 и № 11 (табл. 1) объединяются в восьмерку.

Рис. 2. Na, Са-силикат. *P*(*uvw*). Первая цифра — относительная мощность максимума (на рисунке оставлены те, мощность которых ≥15 единиц), вторая (через запятую) — высота *v* в ¹/₁₂₀. долях оси *b*. Выделены векторы сдвига

Выкристаллизовавшийся вариант модели, который лег в основу последующих расчетов, был с тяжелым А и двумя В-атомами в плоскостях mи еще двумя сортами В в общих положениях ($k_0 = 8$), т. е. $A^4 + 2B^4 + 2B^8 - в$ центросимметричной группе, и соответственно для ацентричного варианта: $A^4 + 6B^4$. Последующая локализация легких атомов на стадии синтезов $\rho(xyz)$ и уточнение методом наименьших квадратов привели к окончательной формуле соединения $K_3Y[Si_3O_8(OH)_2]$ при $R_{hhl} = 0.435$ (в рамках ф.г. *Pmnb*).

II. Второе соединение выделено среди продуктов гидротермальной кристаллизации в системе Na₂O – CaO – SiO₂ – H₂O (7). Рентгеновская группа $2/m C^{-}/c$. Параметры моноклинной ячейки a = 16,38; b = 5,16;c = 11,74 Å; β = 93°. Как и в предыдущем случае, руководствуясь лишь данными электронного зонда и спектрального анализа, все вероятное содержимое ячейки было разбито на группу «средних» атомов с $~Z_{
m cp}=15$ (A = Ca + Na + Si) и группу легких — анионы O (OH) с Z = 8. Для ячейки объемом $V \sim 1000$ Å³, принимаем $c \cong 5$, что дает пределы для числа $N \sim 65-80$ атомов на ячейку. Поскольку $t \simeq 2$, то с учетом (1) можно было заключить, что m/n лежит в интервале $1,2{-}0,8,\,$ и соответствующий фактор тяжести r = 2 - 1,5. В предположении $m \approx n$ $(B_{\text{Buffloor}} = 1, 6-1, 7; \max \sin \theta / \lambda \leq 0, 75)$ оцениваем величину фона $\Phi_{\text{общ}}$ (=85 абс. ед.) критерий дискретности M (=2,3) и предельную достоверную амплитуду $\delta p(M)$ (=2,47). При таких условиях среди фона

невозможно обнаружение даже векторов (единичных) A_{AA} , не говоря уже о A_{AO} или A_{OO} *; на реальной функции Патерсона можно искать с достаточной достоверностью лишь трех- и четырехкратные пики (они и представлены на рис. 2). Геометрический анализ оставленных максимумов не позволял достаточно уверенно отбросить одну из двух возможных федоровских групп, но не оставлял сомнения в том, что «средние» атомы подчиняются симметрии C2/c. Это позволило осуществить выделение основной системы (о.с.) по методу кратных пиков в рамках моноклинной голоэдрии (⁸). Местоположение сильного пика 47,60 и характерные тройки

Рис. 3. Na,Ca-силикат. $a - M_2(I)$; показаны векторы сдвига I и II. $\delta - M_4 = \{M_2(I), M_2(II)\}$. Копия о.с., выделенная по векторам I и II

ников 77,0, 76,0, 44,0; 77,0, 44,60, 36,0; 77,0, 52,60, 34,0; 77,0, 45,0, 27,0 и т. д. делают особенно вероятным нахождение «средних» атомов на оси 2 и в ц.с. $\overline{1}$. Для двух атомов, один из которых в частном положении (ось 2), а другой — в общем, пара независимых пиков взаимодействия связана соотношением $u_2 = u_1$, $v_2 \neq v_1$, $w_2 = \frac{1}{2} + w_1$ (³). С учетом этого замечания в алгоритме выделения о.с. (общий случай А, см. (⁸)) были использованы два вектора сдвига: І и II (рис. 2). Функции M_2 и M_4 (рис. 3a, δ) иллюстрируют шаги выделения копии с 8 точками о.с. Для большей уверенности в правильности этой копии было проведено два повторных выделения структуры по векторам I' и II', I''II'', которые подтвердили первую копию. Координаты 8 точек были отправными для построения $\rho(xyz)$. Дальнейший анализ привел к формуле Na₂Ca₃Si₃O₁₀ при $R_{hkl} = 0,10$ (в рамках ф.г. C2/c).

Авторы благодарны Б. А. Максимову, Е. Н. Треушникову и Э. А. Кузьмину за участие в дискуссии и помощь в работе.

Институт кристаллографии Академии наук СССР Москва Поступияо 2 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁶ В. В. Илюхин, Н. В. Белов, Кристаллография, **16**, № 6 (1971). Сборн. лекций школы структурн. анализа, Кишинев, 1972. ² В. В. Илюхин, С. В. Борисов, ЖСВ, **1**, 80 (1960); **4**, 602 (1963). ³ С. В. Борпсов, Кристаллография, **9**, 603 (1964). ⁴ Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, ДАН, **192**, 86 (1970). ⁵ Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ДАН, **182**, 1067 (1968). ⁶ Б. А. Максимов, В. В. Илюхин, Н. В. Белов, ДАН, **181**, 591 (1968). ⁷ Е. Н. Треушников, В. В. Илюхин, Н. В. Белов, Кристаллография, **16**, 76 (1971). ⁸ В.В. Илюхин, Э. А. Кузьмин, F. Н. Треушников, Н. В. Белов, ДАН, **200** № 5 (1971).

^{*} Отметим, что перевод катиона Na из первой группы во вторую почти не сказывается на оценках (1).