VIK 548.736.6

КРИСТАЛЛОГРАФИЯ

н. с. корякина, н. в. суворова, л. н. демьянец, б. а. максимов, в. в. илюхин, академик н. в. белов

КРИСТАЛЛИЗАЦИЯ ГЕРМАНАТОВ В СИСТЕМЕ Li₂O — CdO — GeO₂ — H₂O И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Li, Cd-OPTOГЕРМАНАТА

Система Li₂O — CdO — GeO₂ — H₂O изучена нами в двух изотермических сечениях (450° и 500° C) при различном содержании Li₂O и постоянном молярном отношении CdO : GeO₂ = 1 : 1. Аппаратура и методика эксперимента аналогичны описанным ранее (⁴). Шихта — механическая смесь окислов CdO и GeO₂ с растворителем — водным раствором LiOH. Концен-

грация щелочи изменялась от 0 до 30 вес. %. Спстема исследована в гидротермальных условиях методом температурного градиента с перепадом (ΔT) между зонами роста и растворения 20° — 50°.

Результаты гидротермальной кристаллизапи представлены диаграммой (рис. 1).

В отсутствие Li кристаллизуются два гермавата CdGeO, и CdGe₂O₅ и эти фазы сохраняются до концентрации LiOH ~ 3 вес. %, а при концентрациях, превышающих 3%, в исследуемой системе кристаллизуется Li, Cd-ортогермават Li₂CdGeO₄.

При концентрациях LiOH, меньших 12 вес. %, кристаллизация Li, Cd-ортогерманата сопровождается выпадением мелкокристаллической недиагностированной твердой фазы «В»,

дуктах гидротермальной реакции.
Li, Cd-ортогерманат представлен бесцветными прозрачными монокристаллами размером до 3 мм. По данным оптической гонпометрии при осених отношениях a: b: c = 1:0,839:0,758 простые формы монокристаллов Li_cCdGeO₄ — ромбическая призма {110}, пинакоид {100} и диздры (домы) {101}, {101}. При удлиненном габитусе вдоль [001] напболее развиты грани {110}, {101}, {101} (рис. 2).

Для рентгеноструктурного исследования был отобран монокристалл Li_CdGeO, с размерами 0,2 × 0,18 × 0,25 мм³. Лауэвская симметрия *mmm*.

5 Доклады АН, т. 200, № 2

Рис. 1. Схема полей кристаллизации в системе $Li_2O - CdO - GeO_2 - H_2O$ (исходное отношение CdO: : $GeO_2 = 1:1$). I - областькристаллизации соединений $Cd_2GeO_4 + CdGeO_5$; $II - Li_2CdGeO_4 + \phiasa B; III - Li_2CdGeO_4 + Cd (OH)_2$ В ромбической ячейке с a = 6,64 Å (a'-a/2); b = 5,47 Å; c = 5,13 Å при экспериментальной плотности d = 4,38 г/см³ содержатся две единицы $Z = 2Li_2CdGeO_4$. Экспериментальный материал для трехмерного набора интенсивностей дали рентгентоннометрические развертки зон hk0 - hk5, h0l - h1l (Мо K_{α} -излучение, max sin $\theta / \lambda = 0,94$ Å⁻¹, оценка интенсивностей по маркам почернения). Погасание на слоевых (независимые зональные $h0l \div h + l \neq 2n$) фиксировали дифракционный символ

Рис. 3

Рис. 2. Li₂CdGeO₄. Изометрическая проекция, построенная по результатам гопнометрических измерений

Рис. 3. Li₂CdGeO₄. Трехмерная функция Патерсона в точечном изображении. Числитель дает мощность пика в произвольной восьмеричной шкале, знаменатель — координату по оси с в ее сотых долях

mmmP-n-, которому подчиняются две федоровские группы: центросимметричная $D_{2v}^{13} = Pmnm$ и ацентричная $C_{2v}^7 = Pmn2_1(P2_1nm)$. Исходя из материального содержания ячейки (Z = 2), атомы Cd и Ge в рамках указанных групп могут занимать лишь частные двухкратные положения.

Анализ трехмерной функции Патерсона (рис. 3) позволяет надежно зафиксировать атомы Cd и Ge на расстояниях ~ 1,16 Å от клиноплоскости n (y = 0,175). Этим двум двухкратным комплексам соответствует четверка резко выделяющихся по мощности максимумов. Остальные пики, учитывая достаточно сильно различающуюся рассенвающую способность атомов, можно интерпретировать как пики взаимодействия Cd—O и Ge—O, а их расположение в непосредственной близости к плоскостям (uv 0) \equiv (uv 1/2) — существенный аргумент против плоскости m на третьей позиции группового символа.

Систематический анализ пиков взаимодействия (²) с учетом межатомных расстояний Cd—O и Ge—O, а также ряд последовательных полных и разностных синтезов электронной плотности позволили в рамках ацентричной группы *Pmn2*₁ локализовать не только атомы O, но и атомы Li, хотя на долю последних приходится лишь 3% рассеивающей материи.

Локализация легкого Li подтверждена пиками взаимодействия Cd-Li и Ge-Li, которые, перекрываясь (как это выяснилось позднее), порож-

Таблица 1

ATOM	æ/a	y/b	z/c	Bj	Атом	x/a	у/Ъ	z/e	Bj
Cd	0	0,179	0	-0,281	O _I	0,286	0,340	0,893	-0,328
Ge	0,500	0,187	0,001	-0,131	O _{II}	0	0,160	0,441	0,095
Li	0,259	0,333	0,510	-0,348	O _{III}	0,500	0,194	0,380	-0,224

Координаты базисных атомов в кристаллической структуре Li2CdGeO4

330

дают ник, сравнимый по мощности с максимумами, соответствующими взаимодействиям Cd-O (рис. 3).

Уточнение координатных параметров методом наименьших квадратов приводит к $R_{\rm MM} = 0.118$ при $B_{\rm MM} = 0.2$ Å³. Заключительные координаты базисных атомов даны в табл. 1. Межатомные расстояния, рассчитанные IIO этим координатам, сведены в табл. 2.

Подобно расшифрованному в нашей лаборатории Li-метасиликату Li2SiOs [3], структуру Li2CdGeO4 можно считать еще одной хорошей иллюстрацией принципа плотнейшей анионной упаковки. В структурном мотиве Li₂CdGeO₄ (рис. 4) также, как и в Li₂SiO₂, четко выражена известная из кристаллохимии Zn-минералов полярность структур из одних тетраэдров: в плотнейшей упаковке заселена только половина всех тетраэдров, которая определяется однообразной ориентацией своих тетраэдров вершинами в одну сторону по оси (с) (это направление перпендикулярно плоскости рис. 4). Закономерное заполнение тетраэдрических пустот Li¹⁺ и Cd²⁺, Ge⁴⁺ в отношении 1:1 позволяет выделить гофрированные тетраэдрические смешанные кадмиево-германиевые слои (параллельные оси [001]) и расположенные ров. параллельными плоскости лог между ними слои из чисто литиевых тетраэдров (рис. 4, структура

Рис. 4. Кристаллическая структура Li2CdGeO4 из тетраэдров. Проекция ху. Чередование гофрированных тетраэдрических кадмиево-германиевых слоев (германиевые тетраэдры более темные, чем кадмиевые в том же слое) со слоями из чисто литиевых тетраэдров, параллельными плоскости х0г

ZnO(ZnS) с раскраской тетраэдров в три цвета).

При четверной координации атомов Li и Cd имеем идеальный баланс валентностей: на каждом О сходятся вершинами два Li-тетраздра, один Cd- и один Ge-тетраздры. Сумма валентных усилий $\frac{1}{4} + \frac{1}{4} + \frac{2}{4} + 1 = 2$.

Таблипа 2

Go	1-тетраэдр	Ge-тетраәдр		
$Cd - O_I = 2,16$ $O_{II} = 2,26$ $O_{III}^* = 2,14$	$\begin{array}{c c} 0_{I} - 0_{I}^{*} = 3,80\\ 0_{I} - 0_{II} = 3,53\\ 0_{I}^{*} - 0_{II} = 3,53 \end{array}$	0 ₁ = 1,74	$0_{I} - 0_{III} = 2,98$ $0_{I} - 0_{III} = 2,98$ $0_{II} - 0_{III} = 2,97$	
$0^*_{II} = 2,16$	$O_{I} - O_{IHI}^{*} = 3,48$ $O_{I}^{*} - O_{III}^{*} = 3,48$ $O_{II} - O_{III}^{*} = 3,47$	Li- $O_T = 1.97$	тетраэдр $O_{I} - O_{I}^{*} = 3,14$ $O_{I} - O_{II} = 3,15$ $O_{I}^{*} - O_{II} = 3,09$	
Ge	э-тетраэдр	$0_{II} = 1,99$ $0_{I} = 1,89$		
$\begin{array}{c} {\rm Ge} - {\rm O_I} = {\rm 1,74} \\ {\rm O_{II}} = {\rm 1,93} \\ {\rm O_I} = {\rm 1,94} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 ₁ * = 1,91	$\begin{array}{c} \mathbf{O}_{\mathrm{I}} - \mathbf{O}_{\mathrm{III}} = 3, 10 \\ \mathbf{O}_{\mathrm{I}}^{*} - \mathbf{O}_{\mathrm{III}} = 3, 18 \\ \mathbf{O}_{\mathrm{II}} - \mathbf{O}_{\mathrm{III}} = 3, 34 \end{array}$	

Межатомные расстояния в кристаллической структуре LigCdGeO: в A

Примечание. Звездочками отмечены атомы, получающиеся из базисных операциями симметрии.

331

6+

Можно предположить, что четкое выполнение в данном структурном мотиве кристаллохимических условий Паулинга (идеальный баланс валентности и его основа — двуслойная плотнейшая анионная упаковка) создает благоприятные условия для кристаллизации серии изоструктурных германатов с общей химической формулой Li₂X²⁺GeO₄, где X²⁺ = Mg, Zn, Co, Fe, Cd (⁴).

Рис. 4 вскрывает причину псевдопериода ^а/₂: сосредоточение тяжелых атомов, связанных клипоплоскостью, в самой клиноплоскости.

Институт кристаллографии Академии наук СССР Москва Поступило 20 V 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Л. Н. Демьянец, В сборн. Гидротермальный синтев кристаллов, «Наука», 1968, стр. 93. ² С. В. Борисов, Кристаллография, 9, 603 (1964). ³ Б. А. Максимов, Ю. А. Харитонов и др., ДАН, 178, № 6 (1968). ⁴ Pierre Tarte, Rene C'ahay, C. R., 271, Ser. C. № 14, 777 (1970).