УДК 548.52

## В. В. СОЛОВЬЕВ, В. Т. БОРИСОВ

## ИЗУЧЕНИЕ КИНЕТИКИ РОСТА ГРАНИ КРИСТАЛЛА МЕТОДОМ МОДЕЛИРОВАНИЯ

(Представлено академиком Г. В. Курдюмовым 18 VI 1971)

В статье рассматривается методика и некоторые результаты моделирования на ЭВМ атомарного роста грани идеального кристалла с простой кубической структурой. Обозначим направление роста (001) грани (001) через k, а перпендикулярные к нему кристаллографические оси символами i п j. Состояние идеального кристалла описывается функцией k (i, j), где k, i п j — целочисленные координаты атомов вдоль указанных направлений. Предполагается, что функция k (i, j) однозначна. Моделируется рост грани над участком атомарной плоскости, координаты i и j которого имеют зпачения от 2 до 51. Всего участок содержит  $50 \times 50 = 2500$  атомов. Циклические граничные условия задавались равенствами k(1, j) = k(51, j), k(52, j) = k(2, j), k(i, 1) = k(i+1, 51), k(i+1, 52) = k(i, 2). Они выполняются, если совместить точки атомарной плоскости с координатами <math>(2, j) и (52, j), а также (i, 2) и (i+1, 52). При этом атомарная плоскость преобразуется в тор. При указанных граничных условиях имитируется рост бескопечной грани.

Рост кристалла можно рассматривать как последовательность элементарных событий — присоединений, отрывов и диффузий на одно межатомное расстояние по поверхности. В настоящей работе поверхностная диффузия не учитывалась. Вероятность отрыва за единицу времени считалась зависящей от числа ближайших к отрываемой частице соседей l (l = 1, 2, 3, 4, 5), находящихся в твердой фазе,

$$u(l) = v \exp \left(A - l\Delta \varphi / (kT)\right). \tag{1}$$

Здесь A — константа, v — вероятность присоединения частицы за единицу времени, которая предполагается не зависящей от структуры грани в месте присоединения частицы,  $\Delta \varphi$  — энергия, примерно равная энергии фазового перехода на одну связь. Очевидно, что для кристалла простой кубической структуры теплота плавления, приходящаяся на один атом,  $q = 3\Delta \varphi$ . При равновесии ( $T = T_0$ ) выполняется условие  $v = \omega$  (3). Поэтому, согласно (1),

$$A = q / (kT_0) = 3\Delta \varphi / (kT_0), \qquad (2)$$

$$\omega(l) = v \exp \left(A - l \,\Delta\varphi/(kT)\right) = v \exp \left[A\left(1 - l/(3(1 - \sigma))\right)\right] = = v \exp \left[-\Delta\mu/kT + A\left(1 - l/3\right)/(1 - \sigma)\right].$$
(3)

Здесь  $\sigma = (T - T_0) / T_0$  — относительное переохлаждение,  $\Delta \mu = q\sigma$  — разность химических потенциалов кристалла и граничащей в них фазы.

При моделировании роста грани на ЭВМ осуществляются последовательные элементарные события с вероятностями, определяемыми формулами (3). Для этого с помощью датчика случайных чисел равновероятно выбираются характеристики места события  $(i_0, j_0)$ . Затем находится хранимая в памяти ЭВМ величина  $l(i_0, j_0)$  — число ближайших соседей твердой фазы у поверхностного атома над  $(i_0, j_0)$  и интервал  $(0, v + \omega(1))$ разбивается на три отрезка с длинами v,  $\omega[l(i_0, j_0)]$  и  $\omega(1) - \omega[l(i_0, j_0)]$ . Если случайное число, вырабатываемое датчиком случайных чисел с равномерным распределением, попадает в первый или второй отрезок, то в модели осуществляется соответственно присоединение или отрыв частиц.

6 Доклады АН, т. 202, № 2

. . . .

Если же случайное число попадет в третий отрезок, то ни одно из событий не реализуется и процедура выбора места и вида события повторяется заново.

В случае осуществления какого-либо события соответствующим образом изменяются хранимые в памяти ЭВМ функции k(i, j) и l(i, j).

В результате присоединения или отрыва над местом  $(i_0, j_0)$  функция k(i, j) изменяется только над этим местом, причем так, что новое значение  $k'(i_0, j_0)$  выражается через прежнее  $k(i_0, j_\gamma)$  формулами  $k'(i_0, j_0) = k(i_0, j_0) + 1$  при присоединении и  $k'(i_0, j_0) = k(i_0, j_0) - 1$  при отрыве. Новое значение  $l(i_0, j_0)$  находилось прямым подсчетом числа ближайших соседей у поверхностного атома  $(i_0, j_0)$ , т. е. вычислялось из функции k(i, j) по формуле

$$l(i_{0}, j_{0}) = 1 + \sum_{\beta=1}^{4} \theta(\xi_{\beta}), \ \xi_{\beta} = k_{\beta} - k_{0}, \quad \theta(\xi) = \begin{cases} 1 & \text{при} & \xi \ge 0, \\ 0 & \text{при} & \xi < 0, \end{cases}$$
(4)

где  $k_0 = k(i_0, j_0), k_\beta = k[(i_0, j_0)_\beta],$  причем  $(i_0, j_0)_\beta$  — координаты ближайших соседних с  $(i_0, j_0)$  мест,  $\beta = 1, 2, 3, 4$  и  $(i_0, j_0)_4 = (i_0 + 1, j_0), (i_0, j_0)_2 = (i_0, j_0 + 1), (i_0, j_0)_3 = (i_0 - 1, j_0), (i_0, j_0)_4 = (i_0, j - 1).$  Новое значение l в точках, соседних с рассматриваемой  $l'_\beta = l'[(i_0, j_0)_\beta]$  находилось из существовавшего до реализации события  $l_\beta$  с учетом изменения, вносимого событием. Если после присоединения выполняется равенство  $k_\beta = k'(i_0, j_0),$ а после отрыва  $k_\beta = k'(i_0, j_0) + 1$ , то соответственно  $l_\beta' = l_\beta + 1$  и  $l_\beta' = l_\beta - 1$ . Если указанные условия не выполняются, то  $l_\beta' = l_\beta$ , т. е. при реализации события  $l_\beta$  не изменяется.

Вероятность присоединения и отрыва за промежуток времени  $\Delta t$ , который можно сопоставить с выборкой указанной выше пары случайных чисел, равна  $v \cdot \Delta t$  и  $\omega(l) \cdot \Delta t$ . Вероятность пустого события есть 1 —  $-v\Delta t - \omega(l) \cdot \Delta t$ . Целесообразно выбрать  $\Delta t$  таким образом, чтобы при наибольшем возможном значении  $\omega = \omega(1)$  вероятность пустого события равнялась нулю. При этом достигается оптимальное использование машинного времени. Таким образом, для осуществления одного испытация приращение времени принималось равным  $\Delta t = [v + \omega(1)]^{-1}$ . При осуществлении  $N_0$  испытаций соответствующее время

$$t(N_0) = N_0 [v + \omega(1)]^{-1}.$$
 (5)

Яспо также, что  $t(N_0) = N(v + \langle \omega \rangle)^{-1}$ , где N — число результативных (т. е. соответствующих присоединениям или отрывам) за время  $t(N_0)$  испытаний, а  $\langle \omega \rangle$  — средняя по времени и по поверхности участка кристалла вероятность отрыва частицы. Средняя скорость v движения границы раздела фаз вычислялась по формуле

$$\frac{v}{a} = \frac{m(N_0)}{t(N_0)} = \frac{m(N_0)}{N_0} [v + \omega(1)], \tag{6}$$

где  $m(N_0)$  — прирост числа частиц в кристалле за  $N_0$  испытаний. Очевидно, что v зависит от размера ребра элементарной ячейки кубической решетки a, величин v и  $\omega$  так, что v/(va) и структура грани, рассматриваемые как функции переохлаждения  $\sigma$ , определяются одним параметром A.

В работе исследовались два варианта: A = 0,5 и A = 4,5. Первый вариант отвечает параметрам  $\Delta \varphi$  и  $T_0$ , характерным для металлов, а второй — для веществ, запимающих промежуточное положение между металлами и типичными органическими соединениями, растущими по тангенциальному механизму. Согласно (3),

$$\omega(l) / \omega(l+1) = \exp[A / (3)(1-\sigma))].$$
(7)

Поэтому  $\omega(1)/\omega(5)$  для A = 0,5 и 4,5 примерно равно 2 и 400 соответственно. Естественно поэтому ожидать, что первый вариант должен описывать нормальный механизм роста, а второй — содержать элементы тангенциального механизма. Наряду с рассмотренной, использовалась и другая математическая модель, в которой l(i, j) не хранилось в памяти ЭВМ, а вычислялось для каждого выбранного места  $(i_0, j_0)$  по функции k(i, j) согласно формуле (4). Соответствующая этой схеме программа имеет скорость счета в несколько раз большую, чем первая, при A = 0.5, и в несколько раз меньшую при A = 4.5.

Соответствие результатов счета по существенно различным, в частности, рассмотренным двум вариантам модели подтверждает правильность



Рис. 1

Рис. 2

je.

Рис. 1. Зависимость скорости роста v от относительного переохлаждения для A = = 0.5 (I) и 4,5 (2)

Рис. 2. Зависимость числа частиц  $\langle m \rangle$  (1) в кристалле и скорости роста v (2) от числа испытаний  $N_0$  для A = 4,5 и  $\sigma = 6,8\cdot 10^{-3}$ 

их работы. Правильность работы первой программы контролировалась также сопоставлением через каждые 5000 испытапий характеристик поверхности, например, l(i, j), находимых путем расчета изменений, вносимых событиями, с вычислепными в специальной подпрограмме.

Приводимые ниже данные относятся к стационарному росту кристалла. Поверхность k(i, j), отвечающая стационарному росту, получалась из пекоторой начальной в результате предварительного счета. Момент выхода на стационарность контролировался по таким характеристикам, как пероховатость, функция распределения поверхностных атомов по атомным слоям и другим. Оказалось, что если начальная поверхность гладкая (k(i, j) = const), то стационарный рост при A = 0,5 и A = 4,5 достигается после реализации пад каждым местом (i, j) около 200 и 40 событий соответственно. При оценке этой величины над каждым местом (i, j) кристалла реализовалось 2000 событий для первого варианта и 400 — для второго.

На рис. 1 представлена зависимость v/(va) от относительного переохлаждения о для A = 4,5 и A = 0,5. В пределах точности эксперимента при A = 0,5 выполняется равенство

$$v/(va) = 1 - \omega(3)/v = 1 - \exp[-A\sigma/(1-\sigma)] =$$
  
= 1 - exp[-\Delta\mu/(kT)]. (8)

Обозначим через  $\langle m \rangle = m(N_0 / 2500)$  среднее по поверхности число частиц, присоединившихся над одним местом  $(i_0, j_0)$  при N испытаниях. Зависимость  $\langle m \rangle$  и v / (va) от  $N_0$  и, значит, от связанного с ним согласно (5) времени для A = 4,5 и  $\sigma = 6,8 \cdot 10^{-3}$  изображена на рис. 2.

Точность результатов оценивалась следующим образом. Обозначим символом  $P_0$  долю числа событий, при которых события не реализовывались, и символом  $(\Delta m)_n$  — изменение в результате события номера *n* числа частиц кристалла ( $(\Delta m)_n = 1; -1,0$ ). Тогда, предполагая величины  $(\Delta m)_n$  независимыми, в соответствии с (6) и согласно теории веро-

6\* 331

ятностей

$$D\left(\frac{v}{va}\right) = \left(1 + \frac{\omega\left(1\right)}{v}\right)\sqrt{\frac{1 - P_0}{N_0}} \,. \tag{9}$$

так как

$$D^{2}\left(\sum_{n=1}^{N_{0}}\frac{(\Delta m)_{n}}{N_{0}}\right) = \frac{1}{N_{0}}\sum_{k=1, -1, 0}\left[(\Delta m)_{n} - \overline{\Delta m}\right]^{2} \approx 1 - P_{0}.$$

Здесь D — среднеквадратичное отклонение,  $\overline{\Delta m} = N_0^{-1} \sum_{n=1}^{\infty} (\Delta m)_n$ .

При выводе (9) используется, что  $\Delta m \ll 1$ . В силу центральной предельной теоремы закон распределения v близок к нормальному. Точки на рис. 1 представляют результаты моделирования. Отрезки имеют размер 6D (отвечающий доверительной вероятности 0,997) и соответствуют в целом ошибкам в определении v/(va) порядка 0,01. Точность определения скорости в точке  $\sigma = 6.8 \cdot 10^{-3}$ , A = 4.5, представляющей особый интерес, повышена и 6D = 0,005 (рис. 1 и 2). Видно, что при A = 4.5 и  $\sigma = 6.8 \cdot 10^{-3}$  скорость движения границы раздела фаз достоверно отлична от нуля.

Результаты моделирования позволяют проанализировать структуру кинетического коэффициента *К* при нормальном росте кристалла. Для скорости роста можно записать

$$v = a(v - \langle \omega \rangle), \tag{10}$$

$$\langle \omega \rangle = \sum_{l=1}^{\infty} P(l) \cdot \omega(l),$$
 (11)

⟨ω⟩ — средняя вероятность отрыва частицы за единицу времени, P(l) вероятность того, что поверхностный атом имеет l соседей.

Из (3), (10) и (11) получаем

$$\frac{v}{va} = 1 - \sum_{l=1}^{3} P(l) \cdot \frac{\omega(l)}{v}, \qquad (12)$$

$$K = \frac{d}{d\sigma} \left. \frac{v}{va} \right|_{\sigma=0} = \sum_{l=1}^{3} \left. \frac{\omega(l)}{v} \left[ \frac{dP(l)}{d\sigma} - \frac{Al}{3} P(l) \right] \right|_{\sigma=0} \quad .$$
(13)

P(l) — одна из характеристик структуры грани, зависимость которых от  $\sigma$ , как отмечалось, определяется величиной A. Моделирование показало, что величина  $P(l) \cdot \omega(l)$  с увеличением l монотонно возрастает при A = 4,5 и имеет максимум при l = 3 для A = 0,5. При этом не наблюдается особенностей в поведении структуры в окрестности  $\sigma = 0$ . Кинетический коэффициент, согласно (13), сохраняет конечное значение. Качественно эти результаты согласуются со статистической теорией нормального роста (<sup>1</sup>).

Вычисление по (13) дает для K значения, совпадающие с наклоном кривых рис. 1 (K = 1,7 для A = 4,5 и K = 0,5 для A = 0,5). В заключение отметим, что, как видно из приведенных данных, при моделировании не обнаруживаются признаки существования критического переохлаждения. Расчет, основанный на методе Кана, дает для A = 4,5 значение критического переохлаждения  $\sigma_h > 0,1$  (<sup>2</sup>, <sup>3</sup>).

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> В. Т. Борисов, ДАН, 151, № 6, 1311 (1963). <sup>2</sup> Дж. Кан, УФН, 91, № 4, 677 (1967). <sup>3</sup> Д. Е. Темкин, Сборн. Рост кристаллов, 5, «Наука», 1965, стр. 89