УДК 550.340

ГЕОФИЗИКА

А. В. БЕЛОНОСОВА

ОБ ОБРАТНОЙ КИНЕМАТИЧЕСКОЙ ЗАДАЧЕ СЕЙСМИКИ ДЛЯ ДВУМЕРНОЙ СРЕДЫ

(Представлено академиком Г. И. Марчуком 5 Х 1970)

Рассмотрим полуплоскость $y \ge 0$ в прямоугольной системе координат x, y, заполненную упругой средой, скорость распространения колебаний (продольных или поперечных) в которой описывается функцией v(x, y). Будем считать функцию v(x, y) непрерывной вместе со своими первыми производными в области $y \ge 0$. На участке [0, l] границы y = 0 в каждой точке (x, 0) помещен источник колебаний, а в каждой точке $(\xi, 0)$, где $\xi \le x$, расположен прибор, регистрирующий время пробега волн от источника. Указанное время пробега обозначим через $\tau(x, \xi, 0)$, причем, в силу принципа взаимности, $\tau(x, \xi, 0) = \tau(\xi, x, 0)$. Обратная кинематическая задача сейсмики состоит в определении

Обратная кинематическая задача сейсмики состоит в определении функции v(x, y) по заданной системе годографов $\tau(x, \xi, 0)$. Впервые обратную кинематическую задачу в случае одномерной скорости v(y) рассматрели в 1905—1907 гг. Герглотц и Вихерт (⁴) *. Они получили явную формулу для v(y) при условии «монотонности» этой функции. Требовалось, чтобы скорость в среде удовлетворяла условиям

$$v'(y) > 0, \quad v''(y) < 0.$$

Двумерная обратная задача впервые рассматривалась в (⁴). В данной заметке двумерная обратная задача сводится к задаче Коши для нелинейного дифференциального уравнения первого порядка эволюционного типа. Дается вывод этого уравнения, предлагается конечно-разностный алгоритм решения задач и обсуждаются результаты численных экспериментов.

1°. Введем функцию $\tau(x, \xi, y_1, y_2)$, равную минимальному времени пробега волны из точки (x, y_1) в точку (ξ, y_2) . Эта функция удовлетворяет дифференциальным соотношениям

$$\left(\frac{\partial\tau}{\partial x}\right)^2 + \left(\frac{\partial\tau}{\partial y_1}\right)^2 = n^2 (x, y_1), \quad \left(\frac{\partial\tau}{\partial \xi}\right)^2 + \left(\frac{\partial\tau}{\partial y_2}\right)^2 = n^2 (\xi, y_2), \quad (1)$$

где $n(x, y) = v^{-1}(x, y)$. Если положить $y_1 = y_2 = y$ и найти производные $\frac{\partial \tau}{\partial y_1}$ и $\frac{\partial \tau}{\partial y_2}$ из (1), получим соотношение

$$\frac{\partial \tau}{\partial y} = \frac{\partial \tau}{\partial y_1}\Big|_{y_1=y} + \frac{\partial \tau}{\partial y_2}\Big|_{y_2=y} = \pm \sqrt{n^2(x,y) - \left(\frac{\partial \tau}{\partial x}\right)^2} \pm \frac{1}{2} \sqrt{n^2(\xi,y) - \left(\frac{\partial \tau}{\partial \xi}\right)^2}.$$

Для исключения произвольной функции n(x, y) из последнего соотношения используем равенства

$$n(\xi, y) = -\lim_{x \to \xi} \frac{\partial \tau}{\partial \xi} = -\tau_{\xi}(\xi, \xi, y), \quad n(x, y) = \lim_{\xi \to x} \frac{\partial \tau}{\partial x} = \tau_{x}(x, x, y), \quad (2)$$

^{*} В (¹) рассматривалась задача для сферически симметричной скоростной модели Земли в сферических координатах. Предложенный там метод легко распространяется на случай одномерной скорости и в декартовых координатах (², ²).

справедливые при условии ограниченности $\partial n / \partial y$. Неопределенность в выборе знаков перед радикалами устраним, введя априорное предположение о монотонном возрастании v(x, y) как функции y. В результате получаем дифференциальное уравнение

$$\frac{\partial \tau}{\partial y} + \sqrt{\tau_x^2(x, x, y) - \left(\frac{\partial \tau}{\partial x}\right)^2} + \sqrt{\tau_\xi^2(\xi, \xi, y) - \left(\frac{\partial \tau}{\partial \xi}\right)^2} = 0$$
(3)

для трехмерной функции $\tau(x, \xi, y)$. Наша обратная задача сводится к задаче Коши для этого уравнения с начальным условием

$$\tau(x,\xi,y) = \tau(x,\xi,0) \quad \text{при } y = 0, \quad 0 \leqslant \xi \leqslant x \leqslant l.$$
(4)

Определив функцию $\tau(x, \xi, y)$ в некоторой области переменных x, ξ, y , можно из равенств (2) найти искомую в обратной задаче функцию n(x, y)в соответствующей области плоскости x, y.

Уравнение (3) является нелинейным уравнением первого порядка со сдвинутым аргументом. Математической теории решения задач Коши для таких уравнений в настоящее время не имеется. Кроме того, учитывая аналогию задачи (3), (4) с задачами интегральной геометрин (³), следует ожидать, что она также относится к типу задач, некорректных в классическом смысле (по Адамару). Линеаризация нашей задачи (3), (4) в окрестности решения $\tau_0(x, \xi, y)$ соответствующего скорости $v_0(x, y) = a + by$ в случае, когда начальное условие (4) задано на всей оси x, приводит к негиперболической задаче Коши для уравнения Дарбу, рассмотрепной в (⁶) *.

В случае, когда функция $\tau(x, \xi, 0)$ зависит лишь от разности $x - \xi$, решение задачи (3), (4) удается построить в явном виде (⁴). При этом получается известная формула Герглотца — Вихерта (², ³).

2°. Выбор численного метода решения задачи (3), (4) был проведен в результате опробования ряда конечно-разностных алгоритмов. Для описания рассмотренных разностных схем введем сеточное пространство переменных $x_i = ih$, $\xi_k = kh$, $y_j = jh_y$ и сеточную функцию $\tau_{ik}^{j} = \tau(x_i, \xi_k, y_j)$, i, k = 0, 1, ..., n, j = 0, 1, ..., m.

Были исследованы следующие явные схемы **.

а) Двуслойная схема

$$(\tau_{ik}^{j+1}-\tau_{ik}^{j})/h_y=-\alpha_{ik}^j-\alpha_{ki}^j,$$

где

$$a_{ik}^{j} = \sqrt{\left(\frac{\tau_{k+1,k}^{j} - \tau_{k,k-1}^{j}}{2h}\right)^{2} - \left(\frac{\tau_{i+1,k}^{j} - \tau_{i-1,k}^{j}}{2h}\right)^{2}} \,.$$

Она является схемой первого порядка с аппроксимацией производных по x и ξ порядка h^2 .

б) Трехслойная схема

$$(\tau_{ik}^{j+2} - \tau_{ik}^{j})/(2h_y) = -\beta_{i,k}^{j-1} - \beta_{k,i}^{j-1},$$

где

$$\beta_{i,k}^{j-1} = \sqrt{\left(\frac{\tau_{k,k-1}^{j-1} - \tau_{k-1,k-1}^{j-1}}{2h}\right)^2 - \left(\frac{\tau_{i,k-1}^{j-1} + \tau_{i,k}^{j-1} - \tau_{i-1,k-1}^{j-1} - \tau_{i-1,k}^{j-1}}{4h}\right)^2}.$$

При этом узлы сетки (i, k) на всех нечетных по номеру слоях, по сравнению с сеткой на исходном слое, сдвинуты на половину шага h в сторону увеличения индексов (i, k). Приведенная здесь схема имеет в целом второй иорядок аппроксимации.

^{*} Геометрически задача Р. Курапта из (⁶) состоит в определении двумерной функции по ее интегралам вдоль полуокружностей с центрами на оси *x*. Такие задачи относятся к классу задач интегральной геометрии (⁵).

^{**} Использование неявных схем в пашей задаче осложнено отсутствием естественных граничных условий для $\tau(x, \xi, y)$ при $\xi = 0, x = l$.

в) Трехслойная схема

$$\begin{array}{l} (\tau_{i,k}^{j+2}-\tau_{i,k}^{j})/(2h_{y})=-\alpha_{i,k}^{j,\underline{n}}-\beta_{k,i}^{j+1},\\ (\tau_{i,k}^{j+3}-\tau_{i,k}^{j+1})/(2h_{y})=-\beta_{i,k}^{j,2}, \end{array}$$

где $\alpha_{i,k}^{i}$ и $\beta_{i,k}^{i}$ определены выше. Здесь так же, как и в предыдущем случае, нечетные слои сдвинуты. Эта схема имеет первый порядок аппроксимации.

3°. В настоящее время нет теории разностных методов для условно корректных дифференциальных задач, к классу которых относится и наша задача. При решении таких задач разностными методами используются приемы регуляризации: оптимизация по величине шагов, сглаживание промежуточных результатов, введение в схему дополнительных регулирующих параметров. В нашем случае регуляризация схем производилась указанными приемами с подбором условий и параметров регуляризации на основе анализа численных экспериментов.

Ταблица 1

y	Точ ное значение <i>n</i>	n _{расч} при x = 6,4 км			
		$h_y = 0.02$	$h_y = 0.03$	$h_{y} = 0.04$	$h_y = 0.06$
$0 \\ 0,04 \\ 0.06$	0,5357 0,5246 0,5191	$0,5347 \\ 0,5238$	0,5347	0,5347	0,5347
$0,08 \\ 0,12 \\ 0,16 \\ 0,18$	$\begin{array}{c} 0,5139\\ 0,5037\\ 0,4938\\ 0,4891 \end{array}$	$0,5133 \\ 0,5034 \\ 0,4936$	0,5032	0, 51 31 0,4934	0,5026
0,20 0,24 0,28 0,30	$0,4844 \\ 0,4753 \\ 0,4665 \\ 0,4622$	$0,4843 \\ 0,4754 \\ 0,4668$	0,4753 0,4625	0,4752	0,4751
$0,32 \\ 0,36 \\ 0,40 \\ 0,42$	$\begin{array}{c} 0,4581 \\ 0,4499 \\ 0,4420 \\ 0,4382 \end{array}$	$0,4585 \\ 0,4505 \\ 0,4428$	0,4505 0,4390	0,4584 0,4428	0,4507
$0,44 \\ 0,48 \\ 0,52 \\ 0,54$	$\begin{array}{c} 0,4344 \\ 0,4271 \\ 0,420 \\ 0,4165 \end{array}$	$0,4353 \\ 0,4287 \\ 0,4212$	0,4282 0,4179	0,4284	0,4294
$0,56 \\ 0,60 \\ 0,64 \\ 0,66$	$0,4131 \\ 0,4065 \\ 0,4000 \\ 0,3969$	0,4145	0,4081 0,3988	0,414 9 0,4023	0,4119
$0,72 \\ 0,78 \\ 0,80 \\ 0,84$	$\begin{array}{c} 0,3878 \\ 0,3794 \\ 0,3763 \\ 0,3707 \end{array}$		0,3900 0,38 15 0,3735	0,3907 0,3799	0,3911
0,88 0,96 1,04	$0,3654 \\ 0,3551 \\ 0,3454 \\ 0,000 \\ 0$		0,0100	$0,3685 \\ 0,3590 \\ 0,3489$	0,3523
1,08 1,12 1,20 1,32 1,44	$\begin{array}{c} 0,3408\\ 0,3362\\ 0,3275\\ 0,3153\\ 0,3039 \end{array}$			0,3360	$0,3176 \\ 0,2717 \\ 0,2717 \\ 0,2717$
1,56	0,2933	1			0,2717

v(x,y) = (1 + 0.9888y + 0.1494x) Km/cek, l = 12.8 Km, h = 0.4 Km

Для отладки алгоритмов и проведения численных экспериментов рассмотрены следующие примеры скоростей: $v_1(x, y) = ax + by + c$, $v_2(x, y) = 4+0.5y + 0.2 \cos x$, $v_3(x, y) = 4+0.2y + 0.5 \cos 0.1\pi x$. Расчет начальных данных $\tau(x, \xi, 0)$ осуществляется по явным формулам для скорости $v_1(x, y)$ и с помощью численного метода (⁷) в остальных случаях. Анализ результатов численного решения обратных задач позволяет сделать следующие выводы.

1. Все рассмотренные разностные схемы обладают практической устойчивостью * лишь при специальном соотношении шагов h п h_y . Необходимо, чтобы область определения численного решения $\tau_{i,k}$ не выходила за пределы области влияния начальных данных для уравнения (3), ограниченной в координатах x, y отрезком $0 \le x \le l$ и лучом, соединяющим точки (0, 0) и (l, 0). В связи с разрежением дискретной системы лучей при увеличении y область практической устойчивости ограничивается глубиной, равной примерно одной трети от максимального погружения граничного луча.

2. В области практической устойчивости точность результатов зависит от погрешностей в начальных данных. Для схемы в) погрешность результатов при соответствующем выборе шагов h и h_y не более, чем на порядок превышает погрешность пачальных данных во всей области устойчивости

3. Наиболее устойчивой из рассмотренных схем оказывается схема в). В области устойчивости она сохраняет точность порядка шага h_y .

Для иллюстрации результатов решения обратной задачи по схеме в) приводится пример (табл. 1). Аналогичные результаты получены для случаев $v_2(x, y)$ и $v_3(x, y)$, причем производилось варьирование параметров *a*, *b*, *c* и погрешностей в исходных данных.

В заключение пользуюсь возможностью поблагодарить член-корр. АН СССР М. М. Лаврентьева и А. С. Алексеева за полезные обсуждения задачи.

Вычислительный центр Спбирского отделения Академии наук СССР Новосибирск Поступило 25 IX 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Herglotz, Zs. Math. u. Phys., 52, 275 (1905). ² С. В. Чибисов, Вестн. противовоздуши. обороны РККА, сбори. 5, 1934. ³ Г. А. Гамбурцев, Сейсмические методы разведки, 1938. ⁴ А. В. Белоносова, А. С. Алексеев, В сбори. Некоторые методы и алгоритмы интерпретации геофизических данных, «Наука», 1967. ⁵ В. Г. Романов, Некоторые обратные задачи для уравнений гиперболического типа, «Наука», 1969. ⁶ Р. Курант, Уравнения с частными производными, М., 1964. ⁷ А. В. Белоносова, В сбори. Математич. проблемы геофизики, Новосибирск, 1970.

^{*} Под практической устойчивостью понимается отсутствие быстрого накопления погрешностей.