УДК 553.24

ГЕОХИМИЯ

В. А. БУРЯК

О ХИМИЗМЕ ОКОЛОРУДНЫХ ИЗМЕНЕНИЙ НА МЕСТОРОЖДЕНИЯХ ЗОЛОТА (ЛЕНСКИЙ ЗОЛОТОНОСНЫЙ РАЙОН)

(Представлено академиком Д. С. Коржинским 7 XII 1970)

Околорудные изменения на различных месторождениях, особенно при выяснении закономерностей размещения золотого оруденения, издавна привлекают внимание геологов ((1-6) и др.). Широко распространено мнение ((2, 5, 6) и др.), что процессы лиственитизации (березитизации), характерные для золоторудных образований, устойчивы по химизму и выражаются в постоянном привносе калия и углекислоты и выносе кремнезема и натрия при относительной стабильности содержания других элементов. Нами изучались околорудные изменения в пределах всего Ленского золотоносного района; ранее они детально были описаны С. Д. Шером (5) в песчаниках Артемовского рудного поля как формация лиственитов.

Процессы лиственитизации (березитизации), сопровождающие образование золотоносных кварцевых жил, и генетически тесно связанной с ними, но несколько более ранней золото-сульфидной минерализации, находятся в тесной зависимости ет состава исходных пород, интенсивности и, главное, глубины (уровня) развития процессов (см. табл. 1 и 2). С понижением уровня процессов в минерализованных зонах (кварцевые жилы совместно с вмещающими измененными породами) последовательно повышается среднее валовое содержание Ca, Mg, Na и CO₂; количество K также сначала возрастает, а потом незначительно убывает за счет интенсивпого развития магнезиально-железистых карбонатов на верхних горизонтах. По сравнению же с вмещающими боковыми породами на нижних горизонтах зон К, как и Na, постоянно выносятся, благодаря проявлению процессов интенсивного кислотного выщелачивания (окварцевания); на верхних — К, наоборот, привносится, а Na выносится (в песчаниках) или же привносится (в алевролитах). Увеличение содержания К непосредственно в экзоконтактах жил, обусловленное усилением серицитизации, отмечается на различных глубинах и в различных породах с той лишь разницей, что на верхних горизонтах оно нарастает постепенно по мере при-'. ближения к жилам и зона выноса не фиксируется, а на средних возрастает только в экзоконтактах жил, но далее уменьшается (на $20-25 \text{ кг}/\text{м}^3$) по сравнению с первичным, обусловливая незначительный суммарный вынос. На нижних горизонтах вынос К наиболее сильно выражен. Содержание Са в измененных породах постоянно выше, чем в неизмененных, но величина привноса находится в обратной зависимости от первичого содержания. Количество Мд в измененных породах, в отличие от Са, не всегда выше по сравнению с исходным: в высокомагнезиальных толщах оно на уровне с исходным или незначительно уменьшается, а в слабомагнезиальных — чаще всего возрастает. Налицо существенный диффузиопный обмен между контактирующими породами. Суммарное содержание железа в нижних частях зон, в связи с усиленным развитием сульфидизации (³), выше, чем в исходных породах, а на верхних, наоборот, ниже: повышенная пиритизация здесь отмечается обычно дишь вблизи контактов жил, а на расстоянии 0,5 м и более от жил происходит общее осветление пород и вынос железа. Поведение углекислоты и кремнезема наиболее контрастное

Сравнительная характеристика кварцевых жил, сульфидов различных разновидностей и связанных с ними околорудных изменений различных уровней локализации

Разновидность сульфидов,	Содерж. кремнезема в сульфидных линзах.	Поведе	Содерж. FeO + Fe ₂ O ₈				
уровни их развития	прожилках и кварцевых жилах	кремне зем	щелочи (Na ₂ O, K ₂ O)	CaO, CO2, S	глинозем	в минерализованных зонах	
	20—30%; менее, чем во вмещающих породах, на 25—40%	Привнос 340—370 кг/м³	Вынос 50—20 кг/м ³	Привнос	Вынос 70—80 кг/м ³	Увеличение на 60—70 кг/м³ по сравнению с исходным	
Рапние дожильные сульфидные линзы; пре- имущественно нижние горизонты		Привнос 150—170 кг/м ³	Вынос 10—15 кг/м ³	»	Вынос 50—60 кг/м ³	Увеличение на 15—20 кг/м ³	
Ранние дожильные кварцево-пиритовые прожилки, прожилковидные скопления; нижние и средние горизонты		Очень слабый привнос или без изменения	Вынос 7—12 кг/м ³	*	Вынос 30—45 кг/м³	Увеличение на 5—10 кг/м ³	
Дожильные пирито- кварцевые прожилки; средние и верхние гори- зонты	60—70%; равно или больше на 1—10%, чем во вмещающих породах	Без изменения или вынос 5—10 кг/м ³	Вынос 5—7 кг/м ³ или без изменения	»	Незначительный вынос	Без изменения, при- внос до 4 кг/м ³	
Золотоносные кварцевые жилы; средцие и верхние горизонты	85—99; в эндо- и экзо- контактах часто повы- шенные содержания маг- пезиально-железистых карбонатов, альбита	Вынос 140—160 кг/м ³	К ₂ О — вынос 5—7 кг/м ³ на нижних горизонтах, привнос 5—19 кг/м ³ на верхних. Na ₂ О — вынос на нижних горизонтах, привнос и зынос на верхних	»	То же	Вынос 10—24 кг/м ³	

Таблица 2 Средний химический состав золотоносных зон центральной части Ленского золотоносного района, развитых на различных уровнях (по данным валового и бороздового опробования)

Компо- нент	Уровень І								Уровень П						
	исходные породы $(n = 15)$			минерализов. вона $(n=25)$				исходные породы $(n = 80)$			минерал из ов. зона (n = 90)				
	Ĉ, %	σ	Č, г на 100 см³	¯c, %	σ	<u>С</u> , г на 100 см³	Δ, KΓ/M³	C, %	σ	<u>с</u> , г на 100 см³	Ĉ, %	σ	<u>С</u> . г. на 100 см³	Δ, KΓ/M³	
$\begin{array}{c} {\rm SiO_2} \\ {\rm TiO_2} \\ {\rm Al_2O_3} \\ {\rm FeO} + {\rm Fe_2O_3} \\ {\rm Mn} \\ {\rm McO} \\ {\rm CaO} \\ {\rm Na_2O} \\ {\rm K_2O} \\ {\rm H_2O^+} \\ {\rm P_2O_5} \\ {\rm CO_2} \\ {\rm S} \end{array}$	57,90 1,07 20,16 6,55 0,06 2,99 1,69 4,03 2,63 0,12 2,40 0,8	3,30 0,18 1,35 0,05 0,70 1,15 0,35 0,90 1,30 1,18 0,40	150,54 2,78 52,42 17,03 0,16 7,77 1,30 4,39 10,48 6,84 0,31 5,98 2,08	57,50 0,92 15,80 8,54 0,06 2,80 0,80 2,00 2,50 0,11 6,10 2,8	6,43 0,20 5,06 5,30 0,06 0,60 1,72 0,45 1,47 1,9 0,08 2,30 5,2	161,00 2,57 44,24 23,91 0,17 7,84 2,24 5,60 7,60 0,31 17,1 7,84	+104,6 -2,1 -81,8 +68,8 +0,1 +0,7 -9,4 -21,5 -48,8 +1,6 -11,2 +5,76	1,15 17,60 6,20 0,05	3,29 0,14 1,12 1,146 0,04 1,20 0,45 0,42 0,62 1,00 0,06 0,82	175,00 3,22 49,28 17,36 0,14 6,22 1,20 5,12 8,76 12,88 0,34 0,56 Следы	57,20 1,08 16,46 6,64 0,11 3,13 1,30 1,82 2,90 3,60 0,12 4,20 0,11	5,85 0,24 3,45 3,58 0,04 1,02 0,75 0,76 0,71 1,15 0,09 2,09 3,5	158, 44 3,00 45,70 18,39 0,30 8,67 3,60 5,04 8,03 9,97 0,33 11,63 0,30	-165,6 +2,2 -46,0 +10,0 +1,6 +24,0 +14,0 -0,08 -7,31 -39,10 -0,04 +110,7 +3,0	
$\frac{\Sigma}{\overline{d}}$ $\frac{M \circ O}{\overline{C} a \overline{O}}$	100,0 6,0		2,6	100,0 3,5		2,8	+93,0	100,00 5,2		2,8	100,00	-	2,77	-25,6	
$\frac{\mathrm{K}_2\mathrm{O}}{\mathrm{Na}_2\mathrm{O}}$	2,5			2,5				1,7			1,6				

(продолжение)

	Уровень III. Вмещающие породы—алевролиты								Уровень III. Вмещающие породы — песчаники						
Компонент	исхо	дные 1 (n = 1	по род ы 5)	минерализов. вона $(n = 52)$				исходные породы $(n = 33)$			минерализов. зона (n = 95)				
	<i>¯</i> C, %	σ	<u>С</u> , г на 100 см³	₹, %	σ	\overline{C} , Γ Ha 100 cm^3	Δ, HΓ/M³	Ē, %	σ	<u>С</u> , г на 100 см³	¯, %	σ	<u>С</u> , г на 100 см³	Δ, KΓ/M³	
SiO ₂ TiO ₂ Al ₂ O ₃ O + Fe ₂ O ₃ Mn MgO CaO Na ₂ O K ₂ O H ₂ O+ P ₂ O ₅ CO ₂ S	56,10 0,94 16,23 8,60 0,14 4,97 3,20 2,30 2,08 3,41 0,16 1,62 0,25	4,11 0,18 0,81 1,18 0,73 1,25 0,66 0,79 0,9 0,08 0,08	155,96 2,61 45,12 23,91 0,39 13,83 8,90 6,39 5,78 9,48 0,44 4,50 0,67	46,63 0,93 15,07 7,72 0,11 4,97 3,69 0,15 7,25 0,32	5,80 0,25 2,31 1,70 0,04 1,14 20,75 0,74 1.45 0,10 0,89	137, 96 2,58 41,90 21,46 0,30 13,81 11,75 7,32 6,32 10,27 0,43 20,17 0,89	-180,0 -0,3 -32,2 -24,5 -0,9 +28,5 +9,3 +5,4 +7,9 -0,1 +156,77 +2,0	0,82 13,36 6,64 0,09 3,85 3,65 3,28 1,07 2,43 0,21 1,31	2,81 0,20 1,06 1,45 0,048 0,53 1,36 0,51 0,88 0,08 1,25 0,51	173,88 2,25 36,74 18,26 0,25 10,59 10,04 9,02 2,94 6,68 0,58 3,60 1,07	57,94 0,86 12,85 6,27 0,09 3,44 3,87 2,70 1,76 2,27 0,11 6,90 0,94	3,60 0,14 1,04 1,15 0,02 0,56 1,14 0,57 1,11 0,02 2,153	159, 33 2, 36 35, 34 17, 24 0, 25 9, 46 10, 64 7, 42 4, 84 6, 24 0, 30 19, 28 2, 58	$\begin{array}{c} -145,5 \\ +1,1 \\ -14,0 \\ -10,2 \\ \hline -11,8 \\ +6,0 \\ -16,0 \\ +19,0 \\ -4,4 \\ -2,7 \\ +156,7 \\ +15,1 \\ \end{array}$	
$\begin{array}{c} \Sigma \\ \overline{d} \\ \underline{MgO} \\ \overline{CaO} \\ \underline{K_2O} \\ \overline{Na_2O} \end{array}$	100,0		2,78	100,0		100 2,78	-28,4	100,0 1,0 0,3		2,75	0,9		2,75	-6,2	

II р и м е ч а н и е. — нижний структурный горизонт; вмещающие породы — филлиты, филлитовидные въролиты (месторождение «Голец Высочайший»); II — верха нижнего структурного горизонта; вмещают породы — филлитовидные алевролиты (месторождение «Сухой лог»); III — верхний структурный слонт (месторождение Догалдынекое). Расстояние по вертикали между уровнями I — II порядка 400—м, между II — III — 2,5 км. Сумма приведена к 100%; отклонение от 100% по частным использованм анализам не превышало ±0,7—0,4%.

и однонаправленное. Содержание последнего по мере увеличения глубины развития метасоматических процессов постепенно возрастает, вплоть до развития окварцевания, а углекислота, наоборот, убывает в связи с ослаблением карбонатной минерадизации.

Дисперсии распределения содержаний компонентов и коррелятивные отношения между ними также отражают их дифференцированное поведение в процессе околорудных изменений (табл. 2). Для компонентов, содержания которых устойчиво изменяются в процессе метаморфизма (SiO₂, CaO, CO₂, S), дисперсии постоянно увеличиваются по мере усиления изменений. При этом в зонах различной степени изменения величины дисперсий различны. Применительно к песчаникам верхних горизонтов намечаются следующие закономерности. В зоне наиболее слабого изменения дисперсии уменьшаются для тех компонентов, которые выносятся в процессе метаморфизма (SiO₂, Al₂O₃. FeO + Fe₂O₃, Na₂O), и, наоборот, возрастают для тех, которые привносятся (K₂O, CaO, CO₂, S). В зоне интенсивного изменения, благодаря значительно более хорошо развитой метаморфической дифференциации и сегрегации, дисперсии, как правило, существенно возрастают, в том числе и для тех компонентов, суммарное содержание которых в целом по зоне изменения уменьшается.

Очевидно, можно говорить о наличии вертикальной зональности в интенсивности проявления процесов кислотного выщелачивания и сопряженного осаждения выщелоченных оснований, ранее в общем виде теоретически доказанной Д. С. Коржинским (4). Поведение щелочей, как и других элементов, в процессе изменений, особенно на различных уровнях, не постоянно и не стабильно; нельзя говорить, что К постоянно привносится, а Nа выпосится. Нижние горизонты рудных зон (ближе всего расположенные к источникам растворов) характеризуются хорошо выраженным кислотным выщелачиванием с выносом не только Na, но и K, верхние — весьма слабым выщелачиванием при ярко выраженном выносе SiO₂ и привносе K, Ca и CO₂. Источником К для верхних, интенсивно березитизированных частей зон, вероятнее всего, явились сами вмещающие породы нижних горизонтов этих зон.

Институт земной коры Сибирского отделения Академии наук СССР Иркутск Поступило 30 XI 1970

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. И. Бородаевский, Генетические проблемы руд, 1960. ² Н. И. Бородаевский, С. Д. Шер, Тр. Центр. н.-и. горно-разв. инст., в. 76 (1967). ³ В. А. Буряк, ДАН, 165, № 5 (1965). ⁴ Д. С. Коржинский, Теория метасоматической зональности, 1969. ⁵ С. Д. Шер, Тр. Центр. н.-и. горно-разв. инст., в. 25 (1953). ⁶ С. Д. Шер, Метасоматические изменения боковых пород и их роль в рудообразовании, 1966.