Доклады Академин наук СССР 1971. Том 200, № 2

УДК 539.38.678

ТЕХНИЧЕСКАЯ ФИЗИКА

н. в. рапп, в. с. ромасько, а. Ф. михаилов

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ВРЕМЕН РЕЛАКСАЦИИ, модулей эластичности и модулей упругости полиэтилена

(Представлено академиком П. А. Ребиндером 5 III 1971)

В работах П. А. Ребиндера с сотрудниками (¹⁻³) было установлено экс-• периментально, а затем (^{*}) подтверждено теоретически, что развитие быстрой ε'(t) и медленной ε''(t) эластических деформаций при действии постоянного напряжения σ происходит в соответствии со следующими соотношениями:

$$\frac{d\varepsilon'(t)}{dt} = \frac{\sigma}{\theta'_{R}E'} \frac{\varepsilon_{m} - \varepsilon'(t)}{\varepsilon'(t)};$$
(1)

$$\frac{d\varepsilon^{*}(t)}{dt} = \frac{\sigma}{\theta^{*}_{n}E^{*}} \frac{\varepsilon^{*}_{m} - \varepsilon^{*}(t)}{\varepsilon^{*}(t)}, \qquad (2)$$

где θ_R' , θ_R'' — времена релаксации, $E' = \sigma/\varepsilon_m'$, $E'' = \sigma/\varepsilon_m''$ — модули эластичности, ε_m' , ε_m'' — равновесные деформации, достигаемые к моменту $t \to \infty$.

Полная деформация, развивающаяся к моменту t,

$$\varepsilon(t) = \varepsilon'(t) + \varepsilon''(t). \tag{3}$$

Нами (⁵) показано, что параметры $\theta_{R}', \theta_{R}'', E'$ и E'' полностью определяют механическое поведение линейных полимеров без течения.

В данной работе исследована температурная зависимость E', E'' и θ_{R}'' в интервале 5—70° С для полиэтилена высокого и низкого давления и установлено, что отношение E_{ϕ} / E_{∞} , где $E_{\infty} = E'E'' / (E' + E'')$, E_{ϕ} — модуль упругости, не зависит от температуры.

Экспериментально были получены изотермические кривые развития медленной эластической деформации, использование которых позволяло вычислить E', E'', θ_R'' из условия наилучшего совпадения экспериментальных кривых с выражениями (1) — (3).

В качестве объекта исследования был выбран частично закристаллизованный полиэтилен различной плотности, в котором развитие медленных эластических деформаций практически завершалось за время, доступное экспериментальному наблюдению (несколько часов). Кинетика эластического деформирования изучалась на образцах, полученных склеиванием двух одинаковых пластинок из исследуемого материала размером $10 \times 2 \times 60$ мм³, между которыми находился проволочный датчик сопротивления (R = 204,2 ом, база 30 мм). Положение тензодатчика в нейтральном по отношению к изгибу слое образца обеспечивало измерение деформаций одноосного растяжения, возникающих при подвешивании к образдам грузов.

Деформации записывались на осциялографе H-700 плейфом с рабочей частотой 0—800 гц при развертке 0,25 см/сек. Измерения температурной зависимости E_o для полиэтилена низкого давления (p = 0,96 г/см³) проводились ультразвуковым методом, описанным в (^o). Для вычисления E_o спользовалась формула

$$E_0 = 2c_t^2 \rho \left\{ 1 + \frac{(c_l/c_l)^2 - 2}{2\left[(c_l/c_l)^2 - 1\right]} \right\},$$

с. и с. — соответственно скорости продольных и поперечных волн. с. и определялись по критическим углам при отражении ультразвука от граицы исследуемый образец — жидкость, скорость распространения ультравука в которой должна быть меньше с. и с. Измерения проводились в че-

 т. 1. Температурная зависимость величин, характеризующих механическое поведеполиэтилена высокого (а) и низкого (б) давления: 1 — равновесный модуль Е_∞;
— модуль эластичности E', характеризующий завершение быстрого релаксационнопроцесса; 3 — то же для медленного (E'') процесса; 4 — время θ_B'' релаксации энергии W'', обусловливающей медленное эластичное деформирование

преххлористом углероде. Модуль упругости полизтилена высокого давлеп ($\rho = 0.91$ г/см³) определялся из соотношения

$$\mathcal{E}_0 = c_l^2 \rho (1 - 2\mu) (1 + \mu)/(1 - \mu),$$

📰 µ — коэффициент Пуассона.

Измерение *c*_i по критическим углам для полиэтилена высокого давлеказались невозможными из-за того, что скорость ультразвука в CCl₄ м/сек) больше *c*_i. Температурная зависимость коэффициента Пуасбыла взята из (⁷).

Результаты температурных изменений модулей E', E'', E_{∞} и времен аксации θ_{R}'' для полиэтилена высокого и низкого давления приведены рис. 1. Ультразвуковые измерения зависимости скоростей продольных поперечных c_{t} волн от температуры, использованные для вычисления E_{∞} для полиэтилена высокого и низкого давления сведены в табл. 1. рис. 1 следует, что в интервалах температур $25-50^{\circ}$ для полиэтилена сокого давления и $20-30^{\circ}$ для полиэтилена низкого давления наблюдасокого давления и $20-30^{\circ}$ для полиэтилена низкого давления наблюдасокого давления и $20-30^{\circ}$ для полиэтилена низкого давления наблюдасокого давления и $20-30^{\circ}$ для полиэтилена визкого давления наблюдасокого давления и $20-30^{\circ}$ для полиэтилена низкого давления наблюдасокого вими приходится почти постоянного значения, характерного для каждорелаксационного процесса (плато); E'' убывает в области перехода и стет в пределах одного и того же релаксационного процесса, так что его вимум приходится на начало плато; E'' - модуль связей между макро $всулами — монотонно убывает независимо от области наблюдения; <math>\theta_{R}''$ вает с ростом температуры для каждого релаксационного процесса.

Физическое толкование характера полученных температурных зависитей может быть дано на основании молекулярной модели (⁴, ⁸), согласкоторой в момент приложения напряжения возникает упругий скачок

$$\varepsilon_0 = \sigma/E_0 = \varepsilon_0 + \varepsilon_0,$$

 $\sigma / E_0' = \varepsilon_0' - скачок, обусловленный параллельным деформировани$ связей между макромолекулами и валентных углов между сегментами

	-				
100 0		-	 	100	
1 21		21.	 - 11	- 22	
		_	 		_

Полиэтилен высокого давления						
T. °C	е _l , м/сен	4	$E_{\infty} \cdot 10^{-3},$ RT/cm ²	$E_{\rm e}/E_{\infty}$		
5 10 20 30 40 50 60	$\begin{array}{r} 1535\\ 1515\\ 1480\\ 1440\\ 1400\\ 1363\\ 1250\\ \end{array},$	$0,40 \\ 0,408 \\ 0,42 \\ 0,44 \\ 0,46 \\ 0,466 \\ 0,47$	3,12 2,76 2,41 1,68 1,32 0,96 0,84	3,18 3,29 3,25 3,45 2,91 3,29 2,82		

т. •с	сĮ, м/сек	с _† , м/сек	$\underset{\mathrm{RT/CM}^2}{E_{\infty}}\cdot10^{-4},$	E_0/E_{∞}
12	2564	1109	1,00	3,27
18	2045	1152	1,04	3,28
20	2040	1145	1,07	2,98
25	1930	1090	0,96	3,05
29	1800	1060	0,85	3,20

макромолекул; $\sigma / E_{o}'' = \varepsilon_{o}'' - cка$ чок, обусловленный деформированием валентных углов между сегментами без растяжения связей.

Для других материалов (кроме линейных полимеров) возможна деформация связей го, не сопровождающаяся деформированием валентных углов. При этом $\varepsilon_0 = \varepsilon_0^{\circ} + \varepsilon_0' +$ $+ \varepsilon_0''$, a, соответственно, $\varepsilon(t) =$ $=\varepsilon_0^\circ+\varepsilon'(t)+\varepsilon''(t).$

В деформированных валентных углах запасается потенциальная энергия

$$W = \Sigma W_i = W' + W'',$$

где W_i — энергия деформированного i-го валентного угла. Численное значение W_i (при некотором о) зависит 1) от ориентации сегментов по отношению к действующему напряжению; 2) от длины сегментов.

Редаксация энергий W' и W'' обусловливает соответственно развитие быстрого и медленного релаксационных процессов. Быстрый релаксационный процесс завершается деформацией $\varepsilon_m' = \sigma / E'$, где E' - модуль связей между макромолекулами.

Е" — равновесный модуль медленного процесса, определяемый энергней

$$W'' = \sigma^2 / E_{\phi}'' = C \sigma^2 / E'', \tag{4}$$

что следует из экспериментально найденного постоянства отношения модулей $E_{\infty}/E_0 = C$.

Поскольку с ростом температуры средняя длина сегментов уменьшается, в пределах некоторого релаксационного процесса W" должно уменьшаться, a E'', согласно (4), увеличиваться. Так как E' при этом с ростом температуры уменьшается, то $E_{\infty} = E'E'' / (E' + E'')$ мало изменяется с температурой, что на графиках соответствует плато. В области релаксационного перехода W с ростом температуры увеличивается. Вследствие разной ориентации сегментов, деформируются и приобретают энергию не все валентные углы между сегментами. По мере возрастания температуры увеличивается количество сегментов, приобретающих подвижность, и суммарная энергия W растет, что сопровождается уменьшением E" п E...

Таким образом, проведенные температурные исследования полиэтилена подтверждают использованную ранее (4, *) молекулярную модель. В соответствии с этой моделью эластическое деформирование определяется релаксацией энергий W', W'' и поэтому характеризуется одним временем релаксации 0_в" и 0_в" для каждого релаксационного процесса. Величины этих энергий определяют соответственно модули эластичности Е' и Е''. Поскольку энергия запасается в процессе упругого деформирования и полностыю определяет равновесную деформацию, то отношение модулей Е. / Е. есть величина постоянная.

Харьковский институт инженеров коммунального строительства

Поступило 16 II 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. В. Чумакова, П. А. Ребиндер, ДАН, 81, № 2, 239 (1951). ² Р. Вер binder, L. Ivanova-Tschumakova, Zs. Phys. Chem., 209, Н. 4/2 (1958). ³ Л. В. Иванова, В. Ф. Чуваев, П. А. Ребиндер, ДАН, 139, № 1, 83 (1961). ⁴ Н. В. Рапи, ДАН, 187, № 1, 81 (1969). ⁵ Н. В. Рапи, В. С. Ромасько, ДАН, 196, № 1, 84 (1971). ⁶ Н. В. Рапи, Пластические массы, № 9, 56 (1962). ⁷ С. П. Кабин, Высокомолекулярные соединения, 1, № 6, 829 (1959). ⁸ Н. В. Рапи, ДАП, 180 М. 4, 82 (1968). 180, № 1, 82 (1968).