УДК 517.535.4

MATEMATUKA

В. С. АЗАРИН

О РЕГУЛЯРНОСТИ РОСТА ЦЕЛЫХ ФУНКЦИЙ

(Представлено академиком Ю. В. Линником 23 III 1971)

Пусть $F_{
ho}$ — класс целых функций порядка ho и нормального типа и $f(z) \Subset F_{
ho}$. Обозначим

$$\begin{split} M\left(r,\,f\right) &= \max_{\substack{\varphi \subseteq \left(0,\,2\pi\right)}} \ln|f\left(re^{i\varphi}\right)|, \\ T\left(r,\,f\right) &= \frac{1}{2\pi} \int\limits_{0}^{2\pi} \ln^{+}|f\left(re^{i\varphi}\right)|\,d\varphi, \end{split}$$

n(r, f) — число нулей f(z) в круге K_r радиуса r.

Введем следующие характеристики роста функции и распределения ее нулей:

$$\overline{M} \ [f] = \limsup_{r \to \infty} M \ (r, \ f) \ r^{-\rho}, \quad \underline{M} \ [f] = \liminf_{r \to \infty} M \ (r, \ f) \ r^{-\rho};$$

$$\overline{T} \ [f] = \limsup_{r \to \infty} T \ (r, \ f) \ r^{-\rho}, \quad \underline{T} \ [f] = \liminf_{r \to \infty} T \ (r, \ f) \ r^{-\rho};$$

$$\overline{\Delta} \ [f] = \limsup_{r \to \infty} n \ (r, \ f) \ r^{-\rho}, \quad \underline{\Delta} \ [f] = \liminf_{r \to \infty} n \ (r, \ f) \ r^{-\rho}.$$

Все эти величины, как известно, конечны для $f \in F_{\mathfrak{p}}$.

Рассмотрим следующие свойства, которыми могут обладать функции $f \in F_p$:

 R_1) $\underline{M}[f] = \underline{M}[f];$

 R_2) $\underline{T}[f] = \underline{T}[f];$

 R_3) $\overline{\Delta}[f] = \overline{\Delta}[f]$.

Эти свойства характеризуют регулярность роста функции и распределения ее нулей.

Функции $f \in F_p$, для которых выполняется свойство R_i , называются функциями совершенно регулярного роста (perfectly regular growth), а свойство R_i означает существование плотности нулей.

Независимость свойств R_1 и R_3 в классе F_ρ показана С. Шахом (1). А. А. Гольдберг (2) показал независимость свойств R_1 и R_2 , ответив тем самым на один из вопросов известного списка (3).

Имеет место следующая

Теорема 1. Пусть $\rho > 1/2 u \rho \neq 1$.

B классе F_0 свойства R_1 , R_2 , R_3 независимы в совокупности.

Это означает следующее. Пусть R_i — невыполнение свойства R_i . Тогда для любого разбиения множества индексов $\{1, 2, 3\}$ на два подмножества A и B найдется такая функция $f \in F_{\varrho}$, что она обладает свойствами R_{α} для $\alpha \in A$ и свойствами R_{β} для $\beta \in B$.

Обозначим $h_{t}(\varphi)$, $\underline{h_{t}}(\varphi)$ соответственно, верхний и нижний индикаторы

 $f(z) \subseteq F_{\rho}$, определенные равенствами (6, 5)

$$h_{f}(\varphi) = \limsup_{r \to \infty} \ln |f(re^{i\varphi})| r^{-\rho},$$

$$\underline{h}_{f}(\varphi) = \sup_{C} \liminf_{\substack{r \to \infty \\ re^{i\varphi} \notin C}} \ln |f(re^{i\varphi})| r^{-\rho},$$

где C обозначает C° -множество, т. е. множество кружков K_{i} на плоскости таких, что их радиусы δ_{i} и центры Z_{i} удовлетворяют условию

$$\limsup_{R \to \infty} \frac{1}{R} \sum_{|Z_j| < R} \delta_j = 0.$$

Индикатор $h_{\tau}(\varphi)$ является ρ -тригонометрически выпуклой функцией (ρ -т.в.ф.) (см., например, (4), стр. 75).

Tеорема 2. Π усть h_1 u h_2 — ∂ se ρ - τ . ϵ . ϕ .

Существует $f(z) \in F_p$, для которой одновременно выполняются равенства

$$h_{t}(\varphi) = \max \left[h_{t}(\varphi), h_{2}(\varphi)\right],$$

$$h_{t}(\varphi) = \min \left[h_{t}(\varphi), h_{2}(\varphi)\right].$$

Обозначим через $R_{\mathfrak{g}}$ такое свойство функции $f \in F_{\mathfrak{p}}$:

 R_{φ}) $h_{f}(\varphi) = h_{f}(\varphi)$.

Определение. Множество $\Theta \subset [0, 2\pi]$ называется множеством вполне регулярного роста для функции $f \in F_\theta$, если свойство R_{φ} выполняется для всех $\varphi \in \Theta$ и не выполняется для всех $\varphi \in [0, 2\pi] \setminus \Theta$.

В работе (7) было показано, что любое замкнутое множество Θ может служить множеством вполне регулярного роста для некоторой функции $f \in F_p$. Это утверждение можно рассматривать как определенного рода «независимость в совокупности» набора свойств R_p . Его можно также получить с помощью теоремы 2, так как имеет место следующая

Теорема 3. Пусть $\rho > 0$. Для любого замкнутого множества $\Theta \subset [0,2\pi]$ найдутся две ρ -т.в.ф. h_1 и h_2 такие, что выполняются соотно-

шения

$$\begin{array}{ll} T_{\phi}) & h_1(\phi) = h_2(\phi), \quad \phi \in \Theta; \\ T_{\phi}) & h_1(\phi) \neq h_2(\phi), \quad \phi \in [0, 2\pi] \setminus \Theta. \end{array}$$

Харьковский институт радиоэлектроники Поступило 22 III 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ S. M. Shach, J. London Math. Soc., 14, 293 (1939). ² А. А. Гольдберг, Докл. АН УССР, № 4, 443 (1963). ³ Исследовательские проблемы, Сборн. пер. Математика, 7, № 5, 133 (1963). ⁴ Б. Я. Левин, Распределение корней целых функций, М., 1956. ⁵ А. А. Гольдберг, В сборн. Современные проблемы теории аналитических функций, Ереван, 1965, стр. 88. ⁶ Phragmen, Lindelöf, Actamath., 31 (1909). ⁷ В. С. Азарин, Матем. сборн., 79, в. 4, 463 (1969).