Доклады Академии наук СССР 1972. Том 202, № 3

УДК 539:104+548:59 *ФИЗИЧЕСКАЯ ХИМИЯ*

Т. Н. ПАРХАЕВА, В. В. ГРОМОВ, академик В. И. СПИЦЫН

КИНЕТИКА РАСТВОРЕНИЯ СУЛЬФАТА СТРОНЦИЯ, ОБЛУЧЕННОГО БЫСТРЫМИ ЭЛЕКТРОНАМИ

В процессе облучения кристаллических соединений в них образуются радиационные нарушения, природа, концентрация и распределение которых зависит от энергии и типа бомбардирующих частиц, а также от условий облучения. Эти нарушения во многом определяют характер последующих изменений структурно-чувствительных свойств твердых тел. Например, скорость растворения в воде сульфата стронция, радиоактивного по S^{35} (50 мC/г), снижается почти в три раза (¹), а облучение гамма-квантами Co^{60} замедляет растворение в 1,5 раза (²). Полученные результаты могут быть объяснены изменением как природы, так и концентрации радиационных дефектов в сульфате стронция под влиянием β - и γ -облучения. Использование других видов ионизирующего излучения должно привести к иным эффектам.

В настоящей работе исследуется влияние быстрых электронов на кинетику растворения сульфата стронция (кристаллы природного целестина и монодисперсные порошки) в дистиллированной воде при 25° С. Приготовление кристаллических осадков SrSO₄ с практически постоянной удельной поверхностью и определение ее величины описано в работе (³). Природные кристаллы целестина месторождения Ляккан (Фергана) ТаджССР в отличие от искусственного $CrCO_4$ содержат примеси кальция и бария, а также парамагнитные частицы в виде SO_4 –, SO_3 – и SO_2 – ион-радикалов. Монокристаллы выпиливались из одного куска, поверхность полировалась, грани всех образцов были ориентированы вдоль оси роста, размеры кристаллов равны $5 \times 3 \times 2$ мм.

Облучение быстрыми электронами проводилось на линейном ускорителе типа У-12. Энергия электронов составляла 3,5 Мэв. Поглощенная доза определялась по силе электронного тока на графитовом коллекторе (4). Точность определения $\pm 30\,\%$. Образцы охлаждались струей холодного воздуха, температура нагрева не превышала 70° . При выбранных условиях облучения толщина кристалла была меньше длины пробега электронов. Распределение поглощенной дозы предполагалось равномерным.

Средняя мощность дозы во всех опытах постоянная $1,2 \cdot 10^3$ рад/сек, поглощенные дозы составляли $1,2 \cdot 10^4$; $1,2 \cdot 10^5$, $1,2 \cdot 10^6$ и $1,2 \cdot 10^7$ рад. Образцы растворялись сразу же после их облучения. Интенсивное перемешивание жидкой фазы обеспечивало протекание процесса растворения в кинетической области.

Константа скорости растворения (K_v) при этих условиях опыта является структурно-чувствительным фактором, т. е. зависит и от возникающих под облучением радиационных нарушений (5). Значение K_v рассчитывалось по выражению

 $K_v = \Delta C_t / \Delta t S_t (C_0 - C_t),$

где ΔC_t — изменение концентрации раствора за время Δt ; S_t — поверхность растворяющихся кристаллов; C_0 — растворимость SrSO₄ в воде при

 25° ; C_t — концентрация раствора в момент времени t. Ошибка в опреде-

лении K_v равна $\pm 8\%$.

На рис. 1 (I) показано изменение константы скорости растворения осадков сульфата стронция в зависимости от поглощенной дозы. Как видно, K_v растет, достигая максимального значения при дозе $\sim 10^5$ рад, затем плавно спадает. Наблюдаемое увеличение константы скорости растворения объясняется образованием в решетке сложных радиационных дефектов, например, центров окраски и их ассоциаций, по-разному влияющих на процесс растворения. Так, методом э.п.р. установлено, что в сульфате стронция после облучения быстрыми электронами при поглощенной дозе

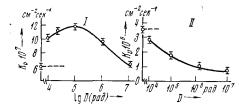


Рис. 1. Изменение константы скорости растворения монодисперсных осадков сульфата стронция (I) и природного целестина (II) в зависимости от поглощенной дозы после облучения быстрыми электронами $(E=3,5\,\mathrm{Mpg})$

 $\sim 10^5$ рад образуются только $\mathrm{SO_3^-}$ ион-радикалы и полностью отсутствуют $\mathrm{SO_4^-}$ ион-радикалы, характерные для радиоактивных препаратов (6). Вероятно, этим и определяется различие в изменении K_v радиоактивных и облученных быстрыми электронами кристаллов (1). По-видимому, дефекты типа $\mathrm{SO_4^-}$ ион-радикалов замедляют растворение, а $\mathrm{SO_3^-}$ ускоряют.

По мере увеличения поглощенной дозы в решетке $SrSO_4$ накапливаются новые радикалы, например SO_2^- , и другие продукты радиолиза

($^{\epsilon}$). Общая концентрация парамагнитных центров [R] возрастает. Согласно ранее установленной корреляции (2), между K_{v} и [R] в облученном сульфате стронция существует экспоненциальная зависимость: K_{v} плавно убывает с увеличением [R], принимая постоянное значение при сравнительно больших концентрациях ион-радикалов. Спад на кривой K_{v} — поглощенная доза, очевидно, определяется этой зависимостью.

Помимо влияния на процесс растворения определенного вида дефектов, немаловажное значение имеет радиационное заряжение. Как было показано в работах (⁸, ⁷), в поверхностной области радиоактивных и облученных кристаллов образуется заряженный слой, который замедляет переход молекул — диполей растворяющегося вещества в жидкую фазу. Таким образом, скорость растворения облученного сульфата стронция зависит от конкуренции двух факторов: образования дефектов и радиационного заряжения.

Ha рис. 1 (II) представлены результаты экспериментов растворения природных кристаллов целестина после облучения электронами. Видно, что константа скорости растворения плавно спадает во всем исследуемом интервале поглощенных доз, оставаясь при этом по величине меньше K_v необлученной соли. Очевидно, в данном случае процесс накопления радиационных нарушений определяется не только свойствами кристаллической решетки, но и примесями, которые имелись в целестине. Нужно также отметить, что необлученный целестин уже содержит ион-радикалы SO₄-, SO₃и SO₂-, образовавшиеся при облучении его в природных условиях за счет β -распада Rb^{87} и постоянного фонового, векового уровня радиации. Это, возможно, и определяет отсутствие максимума на кривой K_v — поглощенная доза. Дело в том, что при одинаковых поглощенных дозах концентрация радиационных дефектов больше в природном целестине за счет уже имеющихся в исходной соли радикалов. Вследствие этого экспериментальные результаты всегда попадают в область спадающих ний K_r .

Таким образом, облучение быстрыми электронами сульфата стронция (поглощенная доза ~10⁵ рад.) сопровождается образованием SO₃¬ ион-радикалов, которые ускоряют растворение. С увеличением концентрации па-

рамагнитных центров скорость растворения снижается. Степень эффекта будет определяться действием таких факторов, как природа радиационных дефектов, их количество и радиационное заряжение.

Институт физической химии Академии наук СССР Москва Поступило 23 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Спицын, В. В. Громов, Т. Н. Беспалова, ДАН, 179, 144 (1968). ² В. В. Громов, Т. Н. Беспалова, Химия высоких энергий, 2, 263 (1968). ³ В. В. Громов, ДАН, 149, 626 (1963). ⁴ П. Я. Глазунов, С. Б. Радзиевский, В сборн. Действие ионизирующих излучений на неорганические и органические соединения, М., 1958, стр. 395. ⁵ А. Ф. Наумов, Межрузовск. сборн. Западно-Сибпрск. Совет по координации и планированию научно-иссл. работ по технич и естеств. наукам, в. 2, 1963, стр. 108. ⁶ Л. Г. Карасева, Кандидатская диссертация, М., 1969. ⁷ В. В. Громов, В. С. Крылов, ДАН, 192, 123 (1970). ⁸ В. В. Громов, Атомная энергия, 26, 250 (1969).