УДК 549.07:542.915:542.945:546.562

МИНЕРАЛОГИЯ

А. А. ГОДОВИКОВ, Ж. Н. ФЕДОРОВА, В. С. ПАВЛЮЧЕНКО, А. Б. ПТИЦЫН

НОВАЯ СУЛЬФОСОЛЬ $Gu_3Bi_3S_7$ — ПРОМЕЖУТОЧНАЯ ФАЗА СИСТЕМЫ $Cu_2S - Bi_2S_3 - S$

(Представлено академиком В. С. Соболевым 16 XII 1970)

Система $Cu_2S - Bi_2S_3 - S$ до сих пор изучена недостаточно полно. В то же время есть сведения об изменении свойств и состава сульфосолей, относящихся к разрезу $Cu_2S - Bi_2S_3$ при добавлении к ним избыточной серы (4 , 2). Данные эти, однако, носили качественный характер. Поэтому представляется интересным изучение системы $Cu_2S - Bi_2S_3 - S$ и поиски новых сульфосолей, относительно более богатых серой, нежели известные висмутовые сульфосоли меди. Эта работа привела к синтезу новой сульфосоли $--Cu_3Bi_3S_7$, описываемой ниже.

Условия синтеза. Сульфосоль была получена двумя способами: 1) отжигом образца эмплектитового состава в парах серы и 2) гидротермально, при добавлении избытка серы или КСІО₃ в качестве окислителя.

В первом случае избыточную серу помещали в эвакуированную кварцевую ампулу с образцом состава $CuBiS_2$ в отдельной пробирке. Ее количество было достаточным для перевода всей меди в двухвалентное состояние. После этого производили двухмесячный отжиг при 450° . В результате получался довольно плотный мелкозернистый образец стально-серого цвета с небольшими кристалликами ковеллина в нижней части. Загруженная сера реагировала не полностью, и ее избыток оседал на стенках ампулы. Проходившую при этом реакцию можно представить уравнением $3CuBiS_2 + S \rightarrow Cu_3Bi_3S_7$.

Для синтеза в гидротермальных условиях использовали кварцевые контейнеры. Описываемая сульфосоль была получена в $1\,M$ растворе $\mathrm{NH_4Cl}$ при 250 и 300° и давлении насыщенного пара из шихты состава $\mathrm{CuBiS_2}$ с добавлением избытка серы. Она же получалась, если повышение окислительного потенциала достигалось прибавлением $\mathrm{KClO_3}$. Выделения сульфосоли игольчатые, волокнистые, ватообразные.

Результаты. Сульфосоль, полученная путем отжига с избытком S, суля по наблюдениям под микроскопом, однородна. В отраженном свете

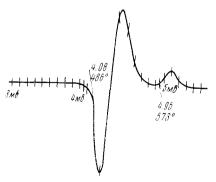


Рис. 1. Кривая ПТА синтезированного соединения

она имеет кремовый цвег с розоватым оттенком. Двуотражение заметное, в иммерсии отчетливое, от розовато-кремового до серо-кремового. Анизотропия сильная: от серо-оранжевых до коричневатых цветов. Отражательная способность ниже, чем у висмутина и догначкаита. HNO₃ (1:1 и конц.) оставляет коричневое иятно; КОН, FeCl₃ (1:1 и конц.) не действуют. Химический анализ (табл. 1) близок к формуле Сu₃Bi₃S₇.

Дебаеграмма сульфосоли Cu₃Bi₃S-четко отличается от дебаеграмм эмплектита и купробисмутита (табл. 2). Определение параметров ячейки методом вращения дало следующие результаты:

Таблица 1 Результаты химического анализа синтетической сульфосоли меди*

Элемент	Содержание вес. %	Ат. колич.	Ат. отнош.	Состав на основе формулы, вес. %	
Cu Bi S	19,44 59,66 21,27	3059 $28,54$ 6633	1,07 1,00 2,32	$18,29 \\ 60,16 \\ 21,54$	
Сумма	100,7			99,99	

^{*} Аналитики В. И. Богданова и О. А. Карпушина (3).

Таблица 2 Сравнение дебаеграмм новой висмутовой сульфосоли меди с дебаеграммами эмилектита и купробисмутита

Сульфосоль Cu ₃ Bi ₃ S ₇ Купробисмутит (8								
Эмплектит (8)		Пиросинтетическая		гидротермальная		Ttympoonemytur (*)		
I	d/n, A	I	d/n, Å	I	d/n, A	I	d/n, Å	
5	7,38	1 3 3	6,41 5,62 5,45	2 3 3	6,50 5,71 5,47	2	6,24	
2	4,72				3,91	3	4,31	
1/2	3,65	3 4	$\frac{3,77}{3,68}$	2 5 5 2 6 4	3,83 3,70 3,61	4m	3,65	
		5 4 2	$3,52 \\ 3,42 \\ 3.31$	6 4 1 4	$3,52 \\ 3,44 \\ 3,34$	1	3,47	
9 7	3,23 3,13	6 10 3	3,42 3,31 3,18 3,10 2,98	$\begin{smallmatrix} 4\\8\\2\end{smallmatrix}$	$3,22 \\ 3,11 \\ 3,03$	10	$3,23 \\ 3,10$	
10	3,05	7	2,87	8	2,88 2,83	¹ / ₂ ш 1 ш	$^{2,96}_{2,86}$	
1/ ₂ 1/ ₂	$2,73 \\ 2,61$	10 2 2 2 8 5	2,75 2,71 2,56 2,51 2,43 2,29	10 3 2 2 6	2,77 $2,70$ $2,60$ $2,51$ $2,44$	6m 1 1/2	2,73 $2,58$ $2,49$	
1/ ₂	$2,42 \\ 2,25$	l i		4 1	$^{2,29}_{2,23}$	1/2	2, 30	
		5 7	2,16 2,06	6	2,16 2,07	2 1/2 3	2,09 2,00 1,961	
2 3	1,965 1,863	$\begin{bmatrix} 9 \\ 2 \\ 9 \end{bmatrix}$	1,960 1,926 1,865	8 2 10	1,966 1,926 1,865	$\begin{array}{ c c c c }\hline & & & \\ & 1/2 & \\ & 1/2 & \\ & & \end{array}$	1,877	
3 2	1,804 1,759	3 3	1,806 1,751	3 3 3 3	1,825 1,804 1,753	1/2	1,831	
1/2 3	1,716 1,658	3 3 3 4	1,731 1,680 1,650	4	1,729 1,690 1,670	3 3	1,719 1,719	
1/2	1,616	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	1,618 1,605	$\begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}$	1,624 1,602	го Бофильт	n Вылеле	

Примечание. Условия съемки: камера РКД-57,3, Со-излучение, Fe-фильтр. Выделены диагностические линии.

 $a=31,50\pm0,5$ Å; $b=3,94\pm0,1$ Å; $c=11,57\pm0,1$ Å; v=1435,041 ų, измеренная плотность $5,90\pm0,03$ г/см³, z=5 (Cu₃Bi₃S₇). Теоретическая плотность 5,93 г/см³.

Термографическое изучение сульфосоли на установке повышенной чувствительности (4) выявило перитектическую реакцию при 486° и илавление при 573° (рис. 1). Плавление вызывает разложение с выделением элемен-

тарной серы и ковелина.

По своему «радикалу» сульфосоль $Cu_6Bi_6S_{14}$ * аналогична джемсониту — $FePb_4Sb_6S_{14}$, одному из «виттитов» — $Pb_5Bi_6(S, Se)_{14}$, из Фалума, Швеция (5), и одному из «козалитов» — $(Cu, Ag)_6Cu_2^{2+}Pb_{10}Bi_6(S, Se)_{14}$ из Банцы Бихор, CPP (6). Интересно, что последняя сульфосоль близка к описанной не только «радикалом», но и тем, что в ее формуле есть избыток серы, из-за чего часть меди приходится принимать двухвалентной.

В заключение отметим, что описанная сульфосоль была обнаружена

также А. Сугаки и Х. Шимой (1), получившими ее иным способом.

Ипститут геологии и геофизики Сибирского отделения Академии наук СССР Новосибирск Поступило 10 XII 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. М. Саи din, G. Dicke, Econ. Geol., **34**, № 2, 244 (1939). ² А. Ю. Малевский, VIII Всесоюзн. совещ. по экспериментальной и техи. минералогии и петрографии, Тез. докл., Новосибирск, 1968. ³ В. И. Богданова, Экспериментальные исследования по минералогии, 1969—1970, Новосибирск, 1970. ⁴ Б. А. Алабужев, Экспериментальные исследования по минералогии 1968—1969, Новосибирск, 1969, стр. 168. ⁵ К. Johansson, Arkiv Kemi, Mineral. Geol., **9**, № 9, 2 (1924). ⁶ J. Grasselly, Acta mineralogica, petrographica, Szeged, **2**, 29 (1948). ⁷ A. Sugaki, H. Shima, Collected Abstracts IMA-IA GOD Meeting's 70, Japan, 9—12, 220 (1970).

^{*} Для удобства сопоставления формула сульфосоли $\mathrm{Cu_3Bi_3S_7}$ удваивается.