УДК 548.736

КРИСТАЛЛОГРАФИЯ

Ю. К. КАБАЛОВ, М. А. СИМОНОВ, академик Н. В. БЕЛОВ

ΚΡИСТАЛЛИЧЕСКАЯ СТРУКТУРА ОСНОВНОГО Na, Zn-OPTOΦΟCΦΑΤΑ Na₂Zn[PO₄](OH)

Объектом исследования были кристаллы Na, Zn-ортофосфата, полученные в лаборатории гидротермального синтеза Института кристаллографии AH СССР О. К. Мельниковым как фаза A при изучении кристаллизации в системе Na₂SO₄ — ZnO — P_2O_5 — H_2O при 400° C и 1000 атм.

Порошкограмма исследуемого соединения (УРС-50ИМ, $\lambda_{\text{сu}}$, БСВ-6, фильтр Ni, 35 кв, 12 ма, сцинтилляционный счетчик) характеризуется иц-

дивидуальной дифракционной картиной (табл. 1).

Пересчет химического анализа $Na_2O-25.90\%$, ZnO-38.35%, $P_2O_5-31.92\%$, $H_2O-4.01\%$, $\Sigma=100.08\%$ позволил, согласно (1), принять на первом этапе исследования приближенную формулу

$$2Na_2O \cdot 2ZnO \cdot P_2O_5 \cdot H_2O = Na_4Zn_2P_2O_9 \cdot H_2O.$$

Рентгенографический монокристальный анализ фазы A выявил моноклинную ячейку с параметрами $a=8,285\pm0.004$ Å, $b=9,906\pm0.005$ Å, $c=5,593\pm0.008$ Å, $\beta=104^{\circ}54'$ *. При удельном весе 3,06 г/см³ в этой ячейке содержится Z=2 единицы $\mathrm{Na_4Zn_2P_2O_9}\cdot\mathrm{H_2O}$.

Основной экспериментальный материал при расшифровке структуры дали 710 отражений с разверток слоевых линий hk0-hk4 (max $\sin\theta/\lambda = 1.03 \text{ Å}^{-1}$, λ_{No} рентгенгониометр Вейсенберга). Их интенсивности оцени-

Таблица 1 Межплоскостные расстояния Na₂Zn [PO₄] (OH)

monthsonocimae paceroxinas incom [1 04] (012)							
I	d	I	d	I	d		
70 7 3 1,5 6 1,5 30 40 8 70 50 10	8,27 4,89 4,70 4,25 4,14 3,83 3,71 3,63 3,59 3,186 3,044 2,849 2,805 2,755	10 35 20 15 30 1 1 1 20 10 15 23 0,5	2,687 2,659 2,592 2,552 2,472 2,441 2,390 2,287 2,125 2,080 2,071 2,052 2,027 1,958	0,5 2 7 15 7 10 9 7 4 0,5 0,5 7 25	1,912 1,884 1,852 1,843 1,812 1,805 1,791 1,771 1,748 1,723 1,688 1,651 1,651		

вались по стандартной шкале почернения c шагом $\sqrt[4]{2}$. Приведение интенсивностей отражений с пяти слоевых к общей шкале выполнялось по развертке h1l. Систематические погасания на слоевых линиях однозначно определяют федоровскую группу $C_{2h}^5 = P2_1/c^{**}$.

Структура Na, Zn-фосфата определена методом тяжелого атома. Координаты относительно тяжелого Zn установлены из патерсоновской функтим P(uvw). Более легкие P, Na и O докализованы в цикле последователь-

** Испытания на пьезоэффект, выполненные на физическом факультете МГУ, дали отринательный результат.

^{*} Параметры определены методом качания в камере РКОП и уточнены на дифрактомстре ДРОН-1.

	x/a	y/b	z/c		x/a	y/b	z/c
Zn P Na ₁ Na ₂ O ₁	0,010 0,297 0,303 0,382 0,357	0,859 0,508 0,143 0,831 0,367	0,779 0,634 0,685 0,652 0,616	$\begin{array}{c c} O_2 \\ O_3 \\ O_4 \text{ (OH)} \\ O_5 \end{array}$		0,498 0,605 0,690 0,935	0,764 0,775 0,951 0,875

Таблица 3 Межатомные расстояния в структуре Na₂Zn [PO₄] (OH), Å

Zn-тетраэдр		Р-тетраэдр		Na ₁ -or	таэдр		Na ₂ -тетраәдр
$\begin{array}{l} Z\dot{n} - O_5 \\ Zn - O_4 (OH) \\ O_2 - O_4 (OH) \\ O_2 - O_5 \\ O_2 - O_4 (OH) \\ O_4 (OH) - O_5 \\ O_4 (OH) - O_4 (OH) \end{array}$	1,95 1,89 1,86 3,39 3,45 2,92 3,21 3,03	$O_1 - O_5 \ 2,47$ $O_2 - O_3 \ 2,38$	$\begin{array}{l} \text{Na}_1 \longrightarrow \text{O}_5 \\ \text{Na}_1 \longrightarrow \text{O}_3 \\ \text{Na}_1 \longrightarrow \text{O}_2 \\ \text{Na}_1 \longrightarrow \text{O}_4 \text{ (OH)} \\ \text{Na}_1 \longrightarrow \text{O}_1 \\ \text{O}_1 \longrightarrow \text{O}_2 \\ \text{O}_1 \longrightarrow \text{O}_3 \\ \text{O}_1 \longrightarrow \text{O}_4 \text{ (OH)} \end{array}$	2,47 2,30 2,73 2,40 2,33 4,23	$O_1 - O_4 (OH)$	2,47 3,67 3,38 3,22 3,91 2,92 3,73	$\begin{array}{c} \text{Na}_2 \longrightarrow \text{Os} \ 2,3^{2} \\ \text{Na}_2 \longrightarrow \text{Os} \ 2,2^{2} \\ \text{Na}_2 \longrightarrow \text{Os} \ 2,2^{2} \\ \text{Na}_2 \longrightarrow \text{Os} \ 2,2^{2} \\ \text{Os} \longrightarrow \text{Os} \ 3,7^{2} \\ \text{Os} \longrightarrow \text{Os} \ 4,0^{2} \\ \text{Os} \longrightarrow \text{Os} \ 4,0^{2} \\ \text{Os} \longrightarrow \text{Os} \ 3,5^{2} \\ \text{Os} \longrightarrow \text{Ol} \ 3,5^{2} \\ \text{Os} \longrightarrow \text{Ol} \ 3,4^{2} \\ O$
Cp. $Zn - 0 = 1$, 0 - 0 = 3,		P - 0 = 1,50 0 - 0 = 2,45			= 2,42 = 3,41		$Na_2 - O = 2,28$ O - O = 3,65

ных приближений с построением трехмерных синтезов электронной плотности $\rho(xyz)$; при этом фактор расходимости R_{hh} снижался от 44,71% с учетом одного независимого Zn до 21,3% по всем базисным атомам. Уточнение полученной модели методом наименьших квадратов (²) в ВЦ МГУ на ЭВМ М-20 по трехмерному набору интенсивностей с введением изотропной температурной поправки B=0,34 Ų снизило фактор расходимости до 43,0%. Координаты базисных атомов приведены в таби, 2.

Анализ баланса валентностей и валовой химической формулы исключает «целую» молекулу H_2O и разделяет в анионной части атомы O и группы OH. Достаточно очевидно, что общими для P-тетраэдра с Zn-тетраэдрами и Na-полиэдрами должны быть O^2 -, а не OH-, иначе баланс валентности для OH слишком напряжен. Анионами, общими для двух Zn-тетраэдров, являются OH-группы.

Из приведенных в табл. З межатомных расстояний видно, что в PO₄-тетраэдрах они соответствуют обычно встречающимся; ребра P-тетраэдра также не выходят из узких пределов. В крупных Zn-тетраэдрах разброс несколько больше.

Полиэдры двух сортов Na различны: у Na₁ пять соседей на расстояниях, почти равных сумме ионных радиусов; шестой — несколько дальше. Эти шесть кислородных атомов образуют октаэдр. У Na₂ четыре соседа по вершинам искаженного тетраэдра; четыре других соседа Na₂ можно считать находящимися уже в далекой второй координационной сфере.

Структурный мотив фазы A наиболее четко выступает в базисной проекции xz (рис. 1).

Как и в ряде других структур с Zn-тетраэдрами (3 , 4) (и аналогичных с Be-тетраэдрами (3)), более тяжелую основу разбираемого фосфата составляют вытянутые в направлении c метацепочки $[A_2X_6]_{\infty} = (Zn_2O_4(OH)_2]_{\infty}$. Вдоль моноклинной оси они расположены на уровнях $y = ^1/_4$, $^3/_4$ и в них

Рис. 1. Na_2Zn [PO₄](ОН). Кристаллическая структура в полиэдрах; проекция xz

Рис. 2. $\mathrm{Na_2Zn}\ [\mathrm{PO_4}](\mathrm{OH})$, проекция уz. Метацепочки $[\mathrm{Zn_2O_4} \cdot (\mathrm{OH})_2]_\infty$, связанные парами общих $\mathrm{PO_4}$ -тетраэдров. Пунктиром показаны водородные связи O — OH , отвечающие расстоянию 2,73 Å

участвуют ортотетраэдры PO_4 . В отличие от ранее разрешенных структур с Zn (и Be)-метацепочками здесь ортотетраэдры PO_4 не инкрустируют их (°), но только связывают соседние и притом сразу парами (рис. 2). По аналогии с другими тетраэдрическими структурами между участника-

ми пары также имеется пустой центросимметричный октаэдр, в таком ок-

таэдре и фиксировано начало ячейки *.

Между трансляционно идентичными уровнями с Zn-цепочками крупные Na создают параллельно (100) стенку и притом двуслойную; два ее этажа связаны центрами симметрии. Один этаж стенки показан на рис. 3,

Рис. 3. Na₂Zn [PO₄] (OH). Сечение $x \approx {}^{1}/_{4}$. Фрагмент (слой) стенки из двух связанных Na-ценочек и PO₄-тетраэдров

в нем чередуются цепи из Na-октаэдров с резкими зигзагами и более ровные цепочки из Na-тетраэдров, последние инкрустированы тетраэдрами PO_4 таким же образом, как Zn (и Be)-цепочки в других структурах. Центры симметрии внутри стенок заставляют и в направлении оси a чередоваться цепи из Na-октаэдров с цепочками из Na-тетраэдров.

Связанные общим ребром Na-октаэдры и P-тетраэдры напоминают ха-

рактерные для гранатов, гипса и др. пары $Ca - SiO_4(SO_4)$.

Расщепление $H_2O + O^{2-} \rightarrow 2(OH)^{1-}$ устанавливает основной характер

расшифрованного фосфата Na₂Zn [PO₄] (OH).

Авторы выражают благодарность О. К. Мельникову за любезно предоставленные кристаллы, Г. А. Араповой за прецизионный химический анализ и Ю. К. Егорову-Тисменко за деятельную помощь в работе.

Московский государственный университет им. М. В. Ломоносова

Поступило 9 IX 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Г. Булах, Руководство и таблицы для расчета формул минералов, М., 1967.
² Б. Л. Тарнопольский, В. И. Андрианов, ЖСХ, 4, 3, 434 (1963). ³ А. В. Никитин, Н. В. Белов, ДАН, 48, № 6 (1963). ⁴ Р. С. Гамидов, В. П. Головачев и др., ДАН, 150, № 2 (1963). ⁵ К. К. Абрашев, В. В. Илюхин, Н. В. Белов, Кристаллография, 9, № 6 (1964). ⁶ Н. В. Белов, Минералогический сборн. Львовск. унив., № 21, в. 3, 231 (1967).

^{*} Чтобы избежать отрицательных атомных координат, в табл. 2 даны положения базисного P возле центра симметрии $0^{1}/_{2}^{1}/_{2}$.