УДК 548.736

Ю. К. КАБАЛОВ, М. А. СИМОНОВ, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ОСНОВНОГО Na, Zn-ОРТОФОСФАТА Na₂Zn[PO₄](OH)

Объектом исследования были кристаллы Na, Zn-ортофосфата, полученные в лаборатории гидротермального синтеза Института кристаллографии AH СССР О. К. Мельниковым как фаза *A* при изучении кристаллизации в системе Na₂SO₄ — ZnO — P₂O₅ — H₂O при 400° С и 1000 атм.

Порошкограмма исследуемого соединения (УРС-50ИМ, λ_{cu} , БСВ-6, фильтр Ni, 35 кв, 12 ма, сцинтиляционный счетчик) характеризуется ипдивидуальной дифракционной картиной (табл. 1).

Пересчет химического анализа $Na_2O - 25,90\%$, ZnO - 38,35%, $P_2O_5 - 31,92\%$, $H_2O - 4,01\%$, $\Sigma = 100,08\%$ позволил, согласно (4), принять на первом этапе исследования приближенную формулу

 $2\mathrm{Na}_{2}\mathrm{O}\cdot 2\mathrm{Zn}\mathrm{O}\cdot\mathrm{P}_{2}\mathrm{O}_{5}\cdot\mathrm{H}_{2}\mathrm{O} = \mathrm{Na}_{4}\mathrm{Zn}_{2}\mathrm{P}_{2}\mathrm{O}_{9}\cdot\mathrm{H}_{2}\mathrm{O}.$

Рентгенографический монокристальный анализ фазы A выявил моноклинную ячейку с параметрами $a = 8,285 \pm 0,004$ Å, $b = 9,906 \pm 0,005$ Å, $c = 5,593 \pm 0,008$ Å, $\beta = 104^{\circ}54'$ *. При удельном весе 3,06 г/см³ в этой ячейке содержится Z = 2 единицы Na₄Zn₂P₂O₉ · H₂O.

Основной экспериментальный материал при расшифровке структуры дали 710 отражений с разверток слоевых линий hk0-hk4 (max sin $\theta/\lambda =$ = 1,03 Å⁻¹, λ_{M0} , рентгенгониометр Вейсенберга). Их интенсивности оцени-

Ι	d	Ι	d	I	d
70731,561,53040870501050100	8,27 4,89 4,70 4,25 4,14 3,83 3,71 3,63 3,59 3,186 3,044 2,849 2,805 2,755	$ \begin{array}{c} 10\\ 35\\ 20\\ 15\\ 30\\ 1\\ 4\\ 20\\ 10\\ 15\\ 23\\ 0,5\\ 4\\ \end{array} $	$\begin{array}{c} 2,687\\ 2,659\\ 2,592\\ 2,552\\ 2,472\\ 2,411\\ 2,390\\ 2,287\\ 2,125\\ 2,080\\ 2,071\\ 2,052\\ 2,027\\ 1,958 \end{array}$	0,5 2 7 15 7 10 9 7 4 4 0,5 0,5 7 25	$\begin{array}{c} 1,912\\ 1,884\\ 1,852\\ 1,843\\ 1,812\\ 1,805\\ 1,791\\ 1,771\\ 1,774\\ 1,774\\ 1,723\\ 1,688\\ 1,668\\ 1,651\\ 1,621\\ \end{array}$

Межплоскостные расстояния Na₂Zn [PO₄] (OH)

Таблица 1

вались по стандартной шкале почернения с шагом $\sqrt{2}$. Приведение интенсивностей отражений с пяти слоевых к общей шкале выполнялось по развертке h1l. Систематические погасания на слоевых линиях однозначно определяют федоровскую группу $C_{2h}^{5} = P2_1 / c^{**}$.

Структура Na, Zn-фосфата определена методом тяжелого атома. Координаты относительно тяжелого Zn установлены из патерсоновской функции P(uvw). Более легкие P, Na и O локализованы в цикле последователь-

^{*} Параметры определены методом качания в камере РКОП и уточпены на дифрактомстре ДРОН-1.

^{**} Испытания на пьезоэффект, выполненные на физическом факультете МГУ, дали отрицательный результат.

Таблица 2

Координаты базисных атомов Na₂Z n [PO4] (OH)

	x/a	y/b	z/c		x/a	y/b	z/c
Zn P Na1 Na2 O1	$\begin{array}{c} 0,010 \\ 0,297 \\ 0,303 \\ 0,382 \\ 0,357 \end{array}$	$\begin{array}{c} 0,859\\ 0,508\\ 0,143\\ 0,831\\ 0,367 \end{array}$	$\begin{array}{c} 0,779 \\ 0,634 \\ 0,685 \\ 0,652 \\ 0,652 \\ 0,616 \end{array}$	$ \left \begin{array}{c} O_2\\ O_3\\ O_4 (OH)\\ O_5 \end{array}\right $	$\begin{array}{c} 0,159 \\ 0,418 \\ 0,990 \\ 0,227 \end{array}$	$0,498 \\ 0,605 \\ 0,690 \\ 0,935$	$0,764 \\ 0,775 \\ 0,951 \\ 0,875$

Таблица З

Zn-тетраэдр		Р-тетраэдр		Na,-октаәдр				Na2-тетраәдр	
$ \begin{array}{c} Zn = O_2 \\ Zn = O_4 (OH) \\ Zn = O_4 (OH) \\ Zn = O_5 \\ Zn = O_4 (OH) \\ O_2 = O_4 (OH) \\ O_2 = O_5 \\ O_2 = O_4 (OH) \\ O_4 (OH) = O_5 \\ O_4 (OH) = O_4 (OH) \\ O_5 = O_4 (OH) \end{array} $	1,94 1,95 1,89 1,86 3,39 3,15 2,92 3,21 3,03 2,94	$P = O_1 1, P = O_2 1, P = O_3 1, P = O_5 1, O_1 = O_2 2, O_1 = O_2 2, O_1 = O_5 2, O_2 = O_3 2, O_2 = O_5 2, O_3 = O_5 2, O_5$	$50 \\ 51 \\ 47 \\ 52 \\ 53 \\ 40 \\ 47 \\ 38 \\ 47 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42$	$\begin{array}{c} Na_{1} - O_{1} \\ Na_{1} - O_{5} \\ Na_{1} - O_{3} \\ Na_{1} - O_{2} \\ Na_{1} - O_{4} (OE) \\ Na_{1} - O_{1} \\ O_{1} - O_{2} \\ O_{1} - O_{3} \\ O_{1} - O_{4} (OH) \\ O_{1} - O_{1} \end{array}$	2,31 2,47 2,30 2,73 I) 2,40 2,33 4,23 3,16) 3,30 3,63	$\begin{array}{c} O_5 - O_4 \ (OH) \\ O_5 - O_1 \\ O_5 - O_3 \\ O_5 - O_2 \\ O_1 - O_3 \\ O_3 - O_2 \\ O_2 - O_4 \ (OH) \\ O_1 - O_4 \ (OH) \end{array}$) 3,35 2,47 3,67 3,38 3,22 3,91) 2,92) 3,73	$\begin{array}{c} Na_2 & - & 0\\ 0_3 & - & 0_3\\ 0_3 & - & 0_3\\ 0_3 & - & 0_1\\ 0_5 & - & 0_3\\ 0_5 & - & 0_1\\ 0_3 & - & 0_1 \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} & 2,34 \\ & 5,2,25 \\ & 3,2,29 \\ & 3,73 \\ & 4,00 \\ & 3,16 \\ & 4,08 \\ & 3,50 \\ & 3,50 \end{array}$
Cp. $Zn - 0 = 1$, 0 - 0 = 3,	91 11	P - 0 = 1, 0 = 0, 0 = 2,	50 45	N	$a_1 - 0 \\ 0 - 0$	= 2,42 = 3,41		$\begin{array}{c} Na_2 - 0 \\ 0 - 0 \end{array}$	=2,28 =3,65

Межатомные расстояния в структуре Na₂Zn [PO₄] (OH), Å

ных приближений с построением трехмерных синтезов электронной плотности $\rho(xyz)$; при этом фактор расходимости R_{hhl} снижался от 44,71% с учетом одного независимого Zn до 21,3% по всем базисным атомам. Уточнение полученной модели методом наименьших квадратов (²) в ВЦ МГУ на ЭВМ М-20 по трехмерному набору интенсивностей с введением изотропной температурной поправки B = 0,34 Å² снизило фактор расходимости до 13,0%. Координаты базисных атомов приведены в табл. 2.

Анализ баланса валентностей и валовой химической формулы исключает «целую» молекулу H₂O и разделяет в аниопной части атомы O и группы OH. Достаточно очевидно, что общими для P-тетраэдра с Zn-тетраэдрами и Na-полиэдрами должны быть O²⁻, а не OH⁻, иначе баланс валентности для OH слишком напряжен. Анионами, общими для двух Znтетраэдров, являются OH-группы.

Из приведенных в табл. З межатомных расстояний видно, что в РО₄-тетраэдрах они соответствуют обычно встречающимся; ребра Р-тетраэдра также не выходят из узких пределов. В крупных Zn-тетраэдрах разброс несколько больше.

Полиэдры двух сортов Na различны: у Na₁ пять соседей на расстояниях, почти равных сумме ионных радиусов; шестой — несколько дальше. Эти шесть кислородных атомов образуют октаэдр. У Na₂ четыре соседа по вершинам искаженного тетраэдра; четыре других соседа Na₂ можно считать находящимися уже в далекой второй координационной сфере.

Структурный мотив фазы A наиболее четко выступает в базисной проекции xz (рис. 1).

Как и в ряде других структур с Zn-тетраэдрами (³, ⁴) (и аналогичных с Ве-тетраэдрами (³)), более тяжелую основу разбираемого фосфата составляют вытяпутые в направлении с метацепочки $[A_2X_6]_{\infty} = (Zn_2O_4(OH)_2]_{\infty}$. Вдоль моноклинной оси они расположены на уровнях $y = \frac{1}{4}, \frac{3}{4}$ и в них

Рис. 1. Na₂Zn [PO₄](OH). Кристаллическая структура в полиэдрах; проекция *xz*

Рис. 2. Na₂Zn [PO₄] (OH), проекция уz. Метацепочки [Zn₂O₄. • (OH)₂]_∞, связанные парами общих PO₄-тетраэдров. Пунктиром показаны водородные связи О — OH, отвечающие расстоянию 2,73 Å

участвуют ортотетраэдры РО₄. В отличие от ранее разрешенных структур с Zn (и Be)-метацепочками здесь ортотетраэдры РО₄ не инкрустируют их (^e), но только связывают соседние и притом сразу парами (рис. 2). По аналогии с другими тетраэдрическими структурами между участниками пары также имеется пустой центросимметричный октаэдр, в таком октаэдре и фиксировано начало ячейки *.

Между трансляционно идентичными уровнями с Zn-цепочками крупные Na создают параллельно (100) стенку и притом двуслойную; два ее этажа связаны центрами симметрии. Один этаж стенки показан на рис. 3,

Рис. 3. Na_2Zn [PO₄] (OH). Сечение $x \approx 1/4$. Фрагмент (слой) стенки из двух связанных Na-цепочек и PO₄тетраэдров

в нем чередуются цепи из Na-октаэдров с резкими зигзагами и более ровные цепочки из Na-тетраэдров, последние инкрустированы тетраэдрами PO₄ таким же образом, как Zn (и Be)-цепочки в других структурах. Центры симметрии внутри стенок заставляют и в направлении оси *a* чередоваться цепи из Na-октаэдров с цепочками из Na-тетраэдров.

Связанные общим ребром Na-октаэдры и Р-тетраэдры напоминают характерные для гранатов, гипса и др. пары Ca — SiO₄(SO₄).

Расщепление $H_2O + O^{2-} \rightarrow 2(OH)^{4-}$ устанавливает основной характер расшифрованного фосфата Na_2Zn [PO₄] (OH).

Авторы выражают благодарность О. К. Мельникову за любезно предоставленные кристаллы, Г. А. Араповой за прецизионный химический анализ и Ю. К. Егорову-Тисменко за деятельную помощь в работе.

Московский государственный университет им. М. В. Ломопосова

Поступило 9 IX 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Г. Булах, Руководство и таблицы для расчета формул минералов, М., 1967. ² Б. Л. Тарнопольский, В. И. Андрианов, ЖСХ, 4, 3, 434 (1963). ³ А. В. Никитин, Н. В. Белов, ДАН, 48, № 6 (1963). ⁴ Р. С. Гамидов, В. П. Головачев и др., ДАН, 150, № 2 (1963). ⁵ К. К. Абрашев, В. В. Илюхин, Н. В. Белов, Кристаллография, 9, № 6 (1964). ⁶ Н. В. Белов, Минералогический сборн. Львовск. унив., № 21, в. 3, 231 (1967).

* Чтобы избежать отрицательных атомпых координат, в табл. 2 даны положения базисного Р возле центра симметрии 0¹/2¹/2.