УДК 678:532.135

Б. Б. БОЙКО, Н. И. ИНСАРОВА, Г. В. ВИНОГРАДОВ

О КРИТИЧЕСКИХ ЯВЛЕНИЯХ ПРИ ДЕФОРМИРОВАНИИ ЛИНЕЙНЫХ ПОЛИМЕРОВ

(Представлено академиком А. Ю. Ишлинским 22 VI 1971)

К числу особенностей, отличающих вязкоупругие полимерные материалы, можно отнести существование критических явлений при их деформировании, частным проявлением которых, например, является потеря устойчивости течения таких сред (¹⁻⁹).

В настоящей работе исследовался процесс деформирования типичного линейного полимера — полибутадиена с молекулярным весом 1,54.10⁵ при

 $M_w/M_n < 1,1$ в прямоугольных каналах, различающихся величиной поперечного сечения и геометрией входа. Были проведены реологические измерения, визуальные наблюдения поля скоростей и поляризационно-оптические исследования. Для визуализации линий тока применялись жесткие частицы люминофора. Опыты проводилисы при комнатной температуре.

Деформация материала осуществлялась в контейнере, устройство которого было следующим. В стальной плите (рис. 1) толщиной d = 6 мм (плита I) или 10 мм (плита II) прорезалась щель переменной ширины. К этой плите с обеих сторон при помощи пластин с отверстиями (для просвечивания) и болтов прижимались пластины из оптического стекла. Узкая часть закрытой таким образом с

Рис. 1. Схема рабочего узла контейнера

боков щели образовывала рабочий канал. Его ширина h = 2 мм, длина l = 13,5 мм в плите I и l = 17,7 мм в плите II. Отношение ширины входной части щели к ширине канала равнялось 6. В одном из вариантов опыта вход в канал в плите I «сглаживался» по цилиндрической поверхности радиуса 2 мм (плавный вход). Фотографирование интерференционных картин и распределения линий тока осуществлялось фотоаппаратом «Старт» и кинокамерой «Конвас». В остальном методика эксперимента не отличалась от описанной в (¹⁰).

Сдвигающее напряжение на стенке канала τ рассчитывалось обычным образом с учетом поправки, связанной с отклонением процесса течения от плоского (¹¹). Кривая течения для полибутадиена, полученная в таких устройствах, приведена на рис. 2. Здесь же даны фотографии вытекающих струй, соответствующих определенным τ . До $\lg \tau \simeq 6,44$ (назовем эту точку точкой срыва, $\tau = \tau_s$) поведение материала весьма близко к поведению ньютоновской жидкости. При достижении указанного критического напряжения наблюдается резкое возрастание секундного расхода, от $\lg \tau \simeq 6,65$ намечается тенденция к более пологому ходу кривой. Стрелками указан режим, при котором на гладкой поверхности выходящей струи начинает появляться нерегулярная рябь. Затем форма дефектов становится более правильной: они представляют собой ряд относительно мелких рисок. Начиная с τ_s , глубина этих рисок по мере увеличения т уменьшается, а частота растет. Наконец экструдат приобретает форму гладкого прутка, с которого лишь по углам как бы снимается стружка. Однако, например, при $\lg \tau = 6,75$ вновь получены значительные поверхностные возмущения в выходящем потоке.

Остановимся на особенностях поведения материала, сопоставляя наблюдаемые изменения в картине линий тока и в картинах интерференционных полос для трех характерных областей кривой течения, более или менее

Рис. 2. Кривая течения монодисперсного полибутадиена. I - d / h = 5; 2 - d / h = 3; 3 - d / h = 3, «плавный» вход; <math>Q — секундный расход материала. I, II, III — характерные области на кривой течения. a - z — фотографии струй полимера. Стрелками указаны соответствующие им режимы течения. Ортогонально направленным стрелкам соответствует начало появления возмущения

условно отделенных друг от друга косыми черточками и отмеченных на рис. 2 цифрами. Первой из них свойственна непрерывность линий тока в канале и на входе в него, причем зона входа лишена существующих в некоторых вязкоупругих полидисперсных полимерах циркуляционных зон (⁴). На рис. За, б приведены интерференционные картины, соответствующие режиму течения в этой области. Следует подчеркнуть, что пристенные области вблизи выхода из канала (рис. 36), так же как и на входе в него, представляют собой места концентрации напряжений. Отметим, что почти до τ_s для данного материала во всех использованных вариантах опытов выполняется линейная зависимость между порядком полосы (у стенки), пропорциональным разности главных показателей преломления, и т.

Особенно интересна область II. В этом случае характер течения во входной зоне практически не отличается от наблюдаемого в области I. Лишь у краев прямоугольной щели, ограничивающей вход в канал, возникают зоны неоднородностей в материале, которые распространяются на некоторую часть канала вдоль его стенок. Для того чтобы исключить влияние такого явления на поведение среды в области II, использовался и плавный вход. Именно в данной области близ стенок канала отчетливо наблюдается прерывистое, скачкообразное перемещение введенных частиц, которое является свидетельством существования процесса скольжение — прилипание. Оно начинается в верхней части канала и здесь очень хорошо заметно при плавном входе, затем быстро. при увеличении давления, охватывает весь канал. Оптическая картина в данном случае — чувствительный индикатор происходящего. Она теряет устойчивость, становится несимметричной, порядок полос вдоль стенок канала оказывается разным и периодически меняется со временем (рис. Зв). Такое поведение интерференционных полос свидетельствует о локальной релаксации и накоплении напряжений в материале. Периодическое проскальзывание, естественно, сопровождается продольными колебаниями оптической картины в зоне входа. В дальнейшем оно приближается к непрерывному скольжению. При скольжении в канале должна наблюдаться постепенная релаксация существующих в полимере на входе напряжений и оптической анизотропии. Это хорошо подтверждается видом

Рис. 3. Картины интерференционных полос, полученные при деформировании полибутадиена в плоском канале; везде d / h = 3; $a, 6 - \lg \tau = 5.8$; $e - \lg \tau = 6.5$; $e - \lg \tau = 6.6$; $\partial - \lg \tau = 6.75$; τ , дин/см²

интерференционной картины, приведенной на рис. Зг для lg т = 6,6: полосы оканчиваются на стенках канала, т. е. порядок полос убывает по его длине.

Согласно (⁸, ⁹), развитие процесса скольжения обусловлено переходом полибутадиена в высокоэластическое состояние, где он перестает вести себя как жидкотекучее тело. Это особенио типично для линейных гибко-

цепных полимеров с узким молекулярновесовым распределением. В (⁸, ⁹) на это указывает сопоставление результатов визкозиметрических и динамических измерений.

В связи с этим еще раз обратимся к рис. 36. Концентрация напряжений на стенке канала вблизи выхода может привести к тому, что именно здесь раньше, чем в канале, уже в ньютоновской области кривой течения, произойдет переход полимера в высокоэластическое состояние и разовьется проскальзывание. Следствием этого явится периодическая дефектность выходящей струи. Действительно, характер перестройки интерференционной картины в вытекающем материале при появлении поверхностных искажений полностью подтверждает такое предположение.

Для области III характерно отчетливое проявление неоднородностей в материале, которые появляются на входе в канал, у его краев, причем в области III они свойственны и плавному входу. Эти неоднородности хорошо видны из-за рассеяния на них света (рис. 3∂). Создается внечатление, что здесь происходит разрыв сплошности деформируемой среды. В самом канале наступает резкое нарушение режима простого сдвига, линии тока перестают быть параллельными его стенкам и становятся волнистыми, наблюдается своеобразная турбулизация потока. Данной области соответствуют резкие и быстрые, но уже поперечные колебания оптической картины у входа и беспорядочно меняющаяся картина полос в канале (рис. 3∂).

Институт физики Академии наук БССР Минск Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва

Поступило 17 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Я. Малкин, А. И. Леонов, В сборн. Уснехи реологии полимеров, М., 1970. ² J. Р. Тогdella, In: Rheology, 5, N. Y.— London, 1969. ³ E. Badley, H. P. Schreiber, In: Rheology, 5, N. Y.— London, 1969. ⁴ G. A. Bialas, J. L. White, Rubber Chem. and Technology, 42, 675 (1969). ⁵ G. V. Vinogradov, L. I. Ivanova, Rheol. Acta, 6, 209 (1967). ⁶ G. V. Vinogradov, L. I. Ivanova, Rheol. Acta, 7, 243 (1968). ⁷ J. J. Benbow, P. Lamb, SPE Trans., 3, 7 (1963). ⁸ Г. В. Виноградов, Высокомолек. соед., 13, 294 (1974). ⁹ Г. В. Виноградов, Ю. Г. Яновский и др., Пластические массы, № 5 (1974). ¹⁰ Б. Б. Бойко, Н. И. Инсарова, А. С. Лугина, Мех. полимеров, № 5 (1965). ¹¹ С. И. Губкин, С. И. Добровольский, Б. Б. Бойко, Фотопластичность, Минск, 1957.