УДК 513.83

7

МАТЕМАТИКА

В. З. ФЕЙНБЕРГ

КОНЕЧНЫЕ УЛЬТРАМЕТРИЧЕСКИЕ ПРОСТРАНСТВА

(Представлено академиком В. М. Глушковым 29 VI 1971)

Ультраметрика на множестве X— это отображение d множества пар $X \times X$ в множество неотрицательных действительных чисел, удовлетворяющее при любых x, y, z из X условиям: 1) d(x, y) = d(y, x); 2) d(x, y) = 0 тогда и только тогда, когда x = y; 3) $d(x, y) \leqslant \max [d(x, z), d(z, y)]$. Условие 3) является существенным усилением неравенства треугольника. Ультраметрика естественно возникает в теории неархимедово нормированных полей. Цель статьи — классификация конечных ультраметрических пространств. С каждым ультраметрическим пространством (X, d) связывается пара (M, φ) , состоящая из некоторого частично упорядоченного (ч.у.) множества M и специального гомоморфизма φ ч.у. множества M в множество неотрицательных действительных чисел. Доказывается (теоремы 1 и 2), что такая пара полностью характеризует ультраметрическое пространство (X, d) с точностью до изометрии. Отметим, что к рассматриваемым в работе вопросам примыкает задача описания потоковых функций с точностью до эквивалентности (1) и задача метрической характеризации некоторых графов (2).

Хотя некоторые из приводимых ниже результатов и определений допускают естественное обобщение на бесконечность, предполагается, что все

рассматриваемые ниже объекты конечны.

1. Применяя условие $d(x, y) \leq \max [d(x, z), d(z, y)]$ к каждой из сторон треугольника x, y, z и сравнивая полученные соотношения, получаем

Предложение 1. Пусть x, y, z — произвольные точки ультраметрического пространства (X, d), тогда среди чисел d(x, y), d(x, z), d(z, y) два равны между собой, а третье не больше, чем это их общее значение.

Предложение 2. Пусть x, y, z — точки ультраметрического пространства (X, d) с наибольшим расстоянием. Положим $A = \{x \in X | d(x, a) < d(a, b)\}$, $B = \{x \in X | d(x, a) = d(a, b)\}$.

 $Toz\partial a$ 1) $A \neq \emptyset$, $B \neq \emptyset$; 2) $A \cup B = X$, $A \cap B = \emptyset$; 3) d(x, y) =

=d(a, b) для любых $x \in A, y \in B$.

Следствие. Пусть A u B, A' u B' определяются точно так же, как u в предложении 2 относительно пары (a, b) u пространства (X, d) u соответственно относительно пары (a', b') u пространства (X', d').

Тогда если $\psi: X \to X'$ — изометрическое отображение (X, d) на (X', d') и $a' = \psi(a), b' = \psi(b),$ то сужение $\psi|A = \psi_1$ является изометрическим отображением (A, d) на (A', d'), а сужение $\psi|B = \psi_2$ — изометрическим

отображением (B, d) на (B', d').

Обратно, если ψ_1 : $A \to A'$, ψ_2 : $B \to B'$ — изометрические отображения пространств (A, d) и (A', d'), (B, d) и (B', d') соответственно и d(a, b) = d'(a', b'), то ψ : $X \to X'$ — изометрическое отображение (X, d) на (X', d'), где $\psi(x) = \psi_1(x)$, если $x \in A$ и $\psi(x) = \psi_2(x)$, если $x \in B$.

2. T-упорядоченные множества и связанные с ними ультраметрические пространства. Пусть M — ч.у. множество с отношением частичного порядка \leqslant . Будем писать $x \| y$, если элементы не сравнимы в M. Точную верхнюю грань x и y обозначим $x \cup y$. Условимся соотношение $x \leqslant \max(y, z)$ понимать следующим образом. Если y и z сравнимы в M, то x не больше наибольшего из них, если же $z \| y$, то $x \leqslant y$, $x \leqslant z$.

Ч.у. множество M назовем T-упорядоченным, если 1) для любого $x \in$ $\in M$ ч.у. множество $\{y \in M | y \geqslant x\}$ линейно упорядочено; 2) для любы: $x.\ u \in M$ существует $z \in M$ такой, что $z \geqslant x$, $z \geqslant y$. В силу условия : Т-упорядоченное множество обладает в точности одним максимальным эле ментом. Нетрудно видеть, что для дюбых $x, y \in M$ существует $x \mid y$. Ос новную роль в классификации ультраметрических пространств играет сле дующее характеристическое свойство T-упорядоченных множеств. Для дю бых x, y, z

$$x \cup y \leqslant \max(x \cup z, z \cup y). \tag{1}$$

Предложение 3. Для ч.у. множества М следующие два условия эквивалентности: 1) M-T-упорядоченное множество; 2) для любых $x,y\in$ $\in M$ существует $x \cup y$ и для любой тройки $x, y, z \in M$ выполняется соотношение (1).

.Пусть каждому элементу x T-упорядоченного множества M поставлено в соответствие действительное неотрицательное число $\phi(x)$, так что

1) $\varphi(x) = 0$ тогда и только тогда, когда x — минимальный элемент ч.у. множества M:

2) если $x \leq y$, то $\varphi(x) \leq \varphi(y)$.

T-упорядоченное множество M, рассматриваемое вместе с отображением ф. удовлетворяющим условиям 1 и 2, назовем парой и обозначим (М, ф). Ультраметрическим пространством пары (М, ф) назовем ультраметрическое пространство (X, d), где X — множество всех минимальных элементов ч.у. множества M, а ультраметрика определяется формулой

 $d(x, y) = \varphi(x \cup y), \quad x, y \in X.$ **(2)**

Неотрицательная функция d(x, y), определенная согласно (2), действительно является ультраметрикой. Условия 1 и 2 определения ультраметрики непосредственно следуют из свойств функции ф и операции ... В то же время из предложения 3 следует, что для любой тройки $x, y, z \in M$ выполняется соотношение (1). Поэтому в силу условия 2 определения функции φ имеем $\varphi(x \cup y) \leqslant \max [\varphi(x \cup z), \varphi(z \cup y)]$. Но это и означает, что $d(x, y) \leqslant \max \left[d(x, z), d(z, y)\right]$.

3. Отображение $f: M \to M'$ назовем изоморфизмом пар (M, φ) и (M', φ') , если f — изоморфизм ч.у. множеств M и M' и $\varphi(x) = \varphi'(f(x))$.

Предложение 4. Всякий изоморфизм $f: M \to M'$ пар (M, φ) и (M', φ') естественным образом индуцирует изометричное отображение ультраметрических пространств пар (M, φ) и (M', φ') .

Существенным для нас является обращение предложения 4 для случая регулярных пар (см. теорему 1). Если регулярность пар незначительно на-

рушается, то обращение не имеет места.

T-упорядоченное множество M назовем регулярным, если для каждого не минимального $x \in M$ число элементов, непосредственно предшествующих х, не меньше двух. Отображение ф, удовлетворяющее условиям 1 и 2 (см. выше), назовем регулярным, если x < y влечет $x, y \in M$. Пара (M, φ) называется регулярной, если M и φ регулярны.

Предложение 5. Т-упорядоченное множество М регулярно тогда и только-тогда, когда-каждый не-минимальный элемент-х $oldsymbol{\in} M$ можно представить в виде $x = y \cup z$, где $y \neq z$ и y, z — минимальные элементы M.

Следствие. $\max d(x, y) = \varphi(m)$, где $x, y \in X$, X— пространство регулярной пары (M, φ) , m— максимальный элемент M.

Теорема 1. Пусть (X, d), (X', d')— ультраметрические пространства регулярных пар (M, φ) и (M', φ') соответственно, и пусть ψ — изометрическое отображение Х на Х'.

Tогда ψ можно продолжить до изоморфизма пар (M, φ) и (M', φ') и

такое продолжение единственно.

Доказательство. Если |X|=2, то (M,ϕ) обязательно имеет вид $M = \{a, b, c\}, X = \{a, b\}, l < a, l < b, a | b, \varphi(a) = \varphi(b) = 0, \varphi(l) = 0$

=d(a,b). Очевидно, в этом случае теорема справедлива. Докажем единственность продолжения. Пусть $f\colon M\to M'$ — изоморфизм пар и $f\mid X=\psi$. В силу предложения 5, если $x\in M$, $x\notin X$, то $x=z\cup y$, где $z,y\in X$. Но так как f — изоморфизм ч.у. множеств M и M', то $f(z\cup y)=f(z)\cup f(y)$. Учитывая это и $f(z)=\psi(z),\ f(y)=\psi(y),\$ имеем $f(x)=f(z\cup y)=f(z)\cup f(y)=f(z)\cup f(y)$. Таким образом, f(x) зависит только от функтиру продоставления и $f(x)=f(x)\cup f(y)=f(x)\cup f(y)$.

ции ф. Единственность доказана.

Доказательство существования изоморфизма $f\colon M\to M'$ пар (M,φ) и (M',φ') такого, что $f\mid X=\psi$ проведем индукцией по числу элементов X. Пусть $A\subset X, B\subset X, a,b\in X$ — такие же, как и в предложении 2. Обозначим $M_1=X(A)$ множество всех тех элементов T-упорядоченного множества M, каждый из которых меньше или равен некоторому элементу из A (A рассматривается как подмножество ч.у. множества M). Аналогично определяется и $M_2=X(B)$. Очевидно, M_1 и M_2 — T-упорядоченные множества и причем такие, что если $x\in M_1$ (или $x\in M_2$) и $y\geqslant x,y\in M$, то $y\in M_1$ (или $y\in M_2$). Отсюда следует, что $x\parallel y$ для $x\in M_1$, $y\in M_2$, $x\neq m$, $y\neq m$. Так как $A\cup B=X$, то $M_1\cup M_2=M$.

Покажем, что $M_1 \cap M_2 = \{m\}$, где m — максимальный элемент T-упорядоченного множества M. В самом деле, если $z \in M_1 \cap M_2$, то $z \geqslant x \in A$, $z \geqslant y \in B$. Не ограничивая общности, можно предположить, то $z = x \cup y$. Но согласно предложению $2\ d(x, y) = d(a, b)$ для любых $x \in A, y \in B$. Спедовательно, $d(a, b) = d(x, y) = \varphi(x \cup y) = \varphi(z)$. Так как $m \geqslant z$, то $\varphi(m)\geqslant \varphi(z)$. Учитывая, что $d(a,b)=\varphi(z)$ — наибольшее расстояние, то по следствию предложения 5 имеем $\varphi(m) = d(a, b) = \varphi(z)$. Отсюда в силу регулярности ϕ получаем z=m. А так как m заведомо лежит и в M_1 , и в M_2 , то $M_1 \cap M_2 = m$. Очевидно, A совпадает с пространством пары (M_1, φ_1) , а B-c пространством нары (M_2, φ_2) , где $\varphi_1 = \varphi | M_1, \varphi_2 = \varphi | M_2$. Таким образом, получается разложение пространства $X, X = A \cup B, A \cap$ $\bigcap B = \emptyset$ на два попарно непересекающихся непустых пространства, и это разложение индуцирует разложение пары (M, φ) на пары $(M_1, \varphi_1), (M_2, \varphi_2)$ (ϕ_2) , где $M_1 \cup M_2 = M$, $M_1 \cap M_2 = \{m\}$, и $x \| y$ для любых $x \in M_1$, $y \in M_2$. $x \neq m$. Понятно, что такое же утверждение справедливо и для пространства X'.

Условимся обозначение объекта в X', аналогичного объекту в X, получать из обозначений этого объекта в X добавлением штриха. Если в качестве пары (a',b') в пространстве X' взять пару $a'=\psi(a),b'=\psi(b)$, то по следствию предложения 2 изометрическое отображение $\psi:X\to X'$, индуцирует изометрическое отображение $\psi_1:A\to A'$, $\psi_2:B\to B'$, где $\psi_1=\psi(A)$, $\psi_2=\psi(B)$. Предположим, что пары (M_1,ϕ_1) и (M_1',ϕ_1') , $(M_2\phi_2)$ и (M_2',ϕ_2') регулярны, тогда из |A|<|X|, |B|< X следует, что предположение индукции можно применить к пространствам A,A',B,B', парам (M_1,ϕ_1) , (M_1',ϕ_1') , (M_2,ϕ_2) , (M_2',ϕ_2') , изометрическим отображениям ψ_1 и ψ_2 соответственно. В результате получим изоморфизмы $f_1:M_1\to M_1'$, $f_2:M_2\to M_2'$ соответствующих пар. Учитывая, что заведомо $f_1(m)=f_2(m)=m'$ и что $M_1\cup M_2=M$, $M_1\cap M_2=\{m\}$ и x|y, если $x\in M_1$, $y\in M_2$, $x\neq m$, $y\neq m$, получим требуемое изоморфное отображение $f:M\to M'$ пар (M,ϕ) и (M',ϕ') , если положим $f|M=f_1,f|M_2=f_2$. Если регулярность рассматриваемых пар нарушается, то требуется дополнительное рассмотрение, которое мы здесь опускаем.

Теорема 2. Ультраметрическое пространство изометрично ультра-

метрическому пространству некоторой регулярной пары.

Доказательство теоремы проведем индукцией по числу точек ультраметрического пространства (X,d). Если |X|=2, $X=\{a,b\}$, d(a,b)=d, то пара (M,ϕ) , где $M=\{a,b,c\}$, $a\|b,l < a,l < b$, $\phi(a)=\phi(b)=0$, $\phi(l)=d(a,b)$, очевидно, удовлетворяет требованиям теоремы. Пусть |X|>2 и a,b- точки X с наибольшим расстоянием и пусть A и B такие же, как в предложении A. Заметим, что если для

любых $x, y \in A, d(x, a) < d(a, b), d(y, a) < d(a, b)$, то в силу предложения 1 d(x, y) < d(a, b).

 Π одмножества множества X рассматриваются как подпространства

пространства Х с индуцированной метрикой.

Формально для нашего доказательства нужно рассмотреть четыре случая: 1) |A| > 1, |B| > 1; 2) |A| > 1, |B| = 1; 3) |A| = 1, |B| > 1; 4) |A| = |B| = 1.

В случае 4), очевидно, |X|=2, а эта ситуация рассмотрена выше. Так как |A|<|X|, |B|<|X|, то, по предложению индукции, A изометрично пространству некоторой регулярной пары (M_1, φ_1) , если, конечно, |A|>1 и B изометрично пространству некоторой регулярной пары (M_2, φ_2) , если |B|>1. Можно считать, что $M_1\cap M_2=\varphi$. Обозначим $m_1, m_2-\varphi$ единственные максимальные элементы T-упорядоченных множеств M_1 и

 M_2 соответственно.

Случай |A| > 1, |B| > 1. Предположим, что $\varphi_2(m_2) \neq d(a, b)$. В силу сдедствия предложения 5 это может быь только в случае $\varphi_2(m_2)$ < d(a, b). Определим пару (M, φ) следующим образом. Положим M = $=M_1 \cup M_2 \cup \{l\}$ и будем считать, что множество M на подмножествах M_1 и M_2 упорядочено так же, как ч.у. множества M_1 и M_2 соответственно. Кроме того, для любого $x \in M_1 \cup M_2$ положим l > x; если же $y \in M_1$, $x \in M_2$, то считаем x | y. Нетрудно проверить, что так определенное ч.у. множество является регулярным T-упорядоченным множеством, если таковыми являются M_1 и M_2 . По определению полагаем $\phi | M_1 = \phi_1$, $\phi | M_2 = \phi_2, \, \phi(l) = d(a, \, b)$. Так как ϕ_1 и ϕ_2 регулярны и $\phi(m_2) < \phi_2(m_2) < \phi_3(m_2)$ < d(a, b), то для регулярности ϕ надо, очевидно, проверить лишь что $\varphi(m_1) < \varphi(l) = d(a, b)$. В силу следствия предложения $\varphi(m_1) = \varphi_1(m_1)$ равно наибольшему расстоянию между двумя элементами пространства пары (M_1, φ_1) , изометрическому пространству A. Но выше мы видели, что для любых $x, y \in A \ d(x, y) < d(a, b)$, и поэтому $\varphi(m_1) = \varphi_1(m_1) < \varphi_2(m_1)$ $\langle d(a,b) = \varphi_2(l)$. Следовательно, пара (M,φ) регулярна. Пусть x- минимальный элемент множества $M_1,\ y$ — минимальный элемент множества M_2 , тогда в T-упорядоченном множестве M, очевидно, имеем $x \cup y = l$. Поэтому расстояние между x и y в ультраметрическом пространстве пары (M, φ) равно $\varphi(l) = d(a, b)$. Отсюда из предположения индукции и из условия 3 предложения 2 вытекает, что отображение ψ , которое на A равно ψ_1 , а на B равно ψ_2 , является изометрическим отображением пространства X на пространство регулярной пары (M, φ) . Здесь ψ_1 и ψ_2 — изометрические отображения пространств А и В на соответствующие пространства пар $(M_1, \varphi_1), (M_2, \varphi_2)$. В случае, если $\varphi_2(m_2) = d(a, b)$, надо положить $l=m_2$. Тогда так же, как и выше, нетрудно убедиться в том, что (M,φ) регулярная пара и что X изометрично пространству пары (M, φ) .

Нетрудно понять, что случан |A| > 1, |B| = 1 и |A| = 1, |B| > 1 полностью укладываются в схему рассуждений, проведенных для случая

|A| > 1, |B| > 1. Теорема доказана.

Сравнивая теоремы 1 и 2, получаем, что регулярная пара (M, φ) , ультраметрическое пространство которой изометрично данному ультраметрическому пространству (X, d), является полным инвариантом пространства (X, d).

Институт математики Академии наук БССР **М**инск Поступило 22 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Форд, Д. Фалкерсон, Потоки в сетях, М., 1966. ² А. А. Зыков, Теория конечных графов, 1, «Наука», 1966.