УДК 513.831

в. к. бельнов

MATEMATHKA

о метрических расширениях

(Представлено академиком П. С. Александровым 4 XI 1971)

Определение 1. Пусть X — метризуемое пространство. Метризуемое пространство У называется метрическим расширением прос транс тва X, если X можно топологически вложить в пространство Y в качестве всюду плотного подмножества.

I. Следующая теорема является усилением теоремы 1 из (2).

Теорема 1. Пусть X — метризуемое пространство, в котором сущест-

вует замкнутое дискретное подмножество N мощности $\tau \geqslant \aleph_0$.

Тогда для любого метрического пространства У с метрикой р, вес которого $\leqslant au$, найдется такая метрика $arrho_{\mathfrak{d}}$ пространства X, что пространство Yможно изометрично вложить в нарост $ho_0 X \setminus X$ полного метрического расширения $\rho_0 X^*$ пространства X.

Определение 2. Пусть X — метризуемое пространство. Определим кардинальное число $w_N(X)$, характеризующее вес наростов полных

метрических расширений этого пространства следующим образом:

 $w_{\scriptscriptstyle N}(X) = 0$, если X является абсолютной $G_{\scriptscriptstyle \delta}$;

 $w_N(X) = \inf w(\rho X \setminus X)$, где символ w обозначает вес и inf берется по всем метрикам ρ пространства X.

Tеорема 2. Πy сть X — полное метрическое пространство веса n без

изолированных точек.

Tогда для любого кардинального числа т такого, что $ho_0 \leqslant m \leqslant n$ или $\mathbf{m} = 0$ существует подмножество $X_0 \leqslant X$ со следующими свойствами:

1) X_0 всюду плотно в X;

- 2) $w(X \setminus X_0) = m;$ 3) $w(X_0) = n;$
- 4) $w_N(X_0) = m$.

В работе (3) дается ряд необходимых и достаточных условий, чтобы метризуемое пространство имело полное метрическое расширение с наростом размерности $\leq n$. Ниже с помощью понятия л-окаймления, являющегося обобщением понятия окаймления (4), мы дадим еще одно необходимое и достаточное условие существования у метризуемого пространства полного метрического расширения с наростом размерности $\leq n$ (под размерностью везде понимается размерность dim).

Определение 4. Пусть X—метризуемое пространство. Назовем л-окаймлением пространства X такую систему $\gamma = \{U_{\alpha}, \, \alpha \in A\}$ открытых подмножеств пространства X, что 1) γ является локально конечным в $\bigcup U_{\alpha}$ покрытием пространства $\bigcup U_{\alpha}$; 2) множество $X \setminus \bigcup U_{\alpha}$ яв-

ляется абсолютным G_{δ} .

Теорема 3. Для того чтобы метризуемое пространство имело полное метрическое расширение с наростом размерности \leqslant n, необходимо, чтобы для каждой метрики ϱ пространства X, и достаточно, чтобы для некоторой метрики о пространства Х выполиялось следующее условие: в пространстве X существует такая счетная система $\Gamma = \{\gamma_i\}, i = 1, 2, ..., \pi$ -окаймлений пространства Х, что:

- 1) π -окаймление γ_{i+1} звездно вписано в π -окаймление γ_i , $i=1,2,\ldots$;
- 2) для каждого і π -окаймление γ_i имеет кратность $\leqslant n+1$;

3) для любого элемента $U_{\alpha,\,\underline{i}} \in \gamma_i$, $\operatorname{diam}_{\rho} U_{\alpha,\,i} < 1/i$.

Определение 5. Пусть Y — метризуемое пространство, точка $x \in Y$. Назовем весом пространства У в точке х кардинальное число

^{*} Через $\rho_0 X$ обозначаем пополнение пространства X по метрике ρ_0 (1).

 $w_x(Y) = \inf w(Ox)$, где символ w обозначает вес, а \inf берется по всем

окрестностям Ox точки x в пространстве Y.

Теорема 4. Пусть X — метризуемое пространство, $Y_{\rm o}$ — метрическое расширение пространства X и $N \subseteq Y_{\rm o} \setminus X$ — некоторое σ -дискретное подмножество пространства $Y_{\rm o} \setminus X$. Каждой точке $x \subseteq N$ поставим в соответствие произвольное метрическое пространство $A_{\mathrm{x}}
eq \phi$, удовлетворяющеeусловию $w(A_x) \leqslant w_x(Y_0)$.

Tогда существует такое метрическое расширение Y_1 пространства X_2

1) расширение Y_1 допустимым образом * отображается на расширение Y_0 пространства X;

2) если $\hat{f}\colon Y_* o Y_0 - \partial ony$ стимое отображение, то $\hat{\sigma}$ ля любой точки

 $x \in N \subseteq Y_0 \setminus X, f^{-1}(x) = A_x.$

T е о р е м а 5. Пусть X — метризуемое пространство. Y — метрическое расширение пространства X и $N \sqsubseteq Y_{\scriptscriptstyle 0} \setminus X$ — некоторое σ -дискретное подмножество пространства $Y_0 \setminus X$. Каждой точке $x \in N$ поставим в соответствие произвольный метризуемый континуум K_x .

Тогда существует такое метрическое расширение Y_1 пространства X_2

что:

1) расширение Y_4 допустимым образом отображается на расширение Y_0 пространства X:

2) если $f: Y_1 \to Y_0 - \partial$ опустимое отображение, то f совершенно u \hat{o} . x любой точки $x \in N \subseteq Y_0 \setminus X$, $f^{-1}(x) = K_x$.

II. Пусть X — фиксированное некомпактное метризуемое простраватво. Рассмотрим множество M(X) всех метрических расширений простравства X. Во множестве M(X) естественным образом определяется частичный порядок: если $Y_1,\ Y_2 \in M(X),\ {
m to}\ Y_1 \geqslant Y_2$ тогда и только тогда, когда существует допустимое отображение $f: Y_1 \to Y_2$.

T е орема 6. Пусть расширения $Y_i \subseteq M(X)$, $i=1,2,\ldots,n$.

Tогда для того чтобы существовало такое расширение Y igotle M(X) , что $Y\leqslant Y_i$ для каждого $i=1,\,2,\ldots,\,n$, необходимо и достаточно, чтобы выполнялось следующее условие: пусть F — замкнутое подмножество пространства X, тогда существует такая непрерывная функция f, определенная на пространстве X, что $F = \{x \in X: f(x) = 0\}$ и f продолжается на каждое расширение Y_i , $i = 1, 2, \ldots, n$.

Следствие. Пусть расширения $Y_i \in M(X)$, $i = 1, 2, \ldots, n$, и пусть пространство Х является открытым подмножеством наждого расширения

 $Y_i, i = 1, 2, \ldots, n.$

Тогда существует такое расширение $Y \in M(X)$, что $Y \leqslant Y$, для любого $i = 1, 2, \ldots, n$.

 ${f T}$ е ор е м а 7. Пусть X — некомпактное метризуемое пространство. Рас-

смотрим два случая.

1) Пространство X не локально компактно. Тогда существуют такие расширения $Y_{\scriptscriptstyle 1},\ Y_{\scriptscriptstyle 2} \in M(X),$ что для любого расширения $Y \in M(X)$ не могут одновременно выполняться неравенства $Y\leqslant Y_i$ и $Y\leqslant Y_2$.

2) Пространство X локально компактно. Тог $\hat{a}a$ для любых расширений ${Y}_{\mathbf{1}},\,{Y}_{2} \Subset M(X)$ существует такое расширение ${Y} \Subset M(X),$ что ${Y} \leqslant {Y}_{\mathbf{1}}$ и

 $Y \leqslant Y_2$.

Определение 6. Пусть расширения $Y_{\mu} \subseteq M(X)$, $\mu \subseteq \Omega$. Назовем точной верхней гранью элементов $Y_{\mu},\ \mu \subseteq \Omega,$ такое расширерение $Y'={}^{\backprime}/{}Y_{\mu}$, что 1') $Y'\geqslant Y_{\mu}$ для любого $\mu\in\Omega;\,2'$) если расшире-

ние $\overline{Y} \in M(\overline{X})$ таково, что $\overline{Y} \geqslant Y_{\mu}$ для любого $\mu \in \Omega$, то $\overline{Y} \geqslant Y'$. Далее назовем точной нижней гранью элементов Y_{μ} , $\mu \in \Omega$, такое расширение $Y'' = \bigwedge_{\mu \in \Omega} Y_{\mu}$, что 1'') $Y'' \leqslant Y_{\mu}$ для любого $\mu \in \Omega$; 2'') если рас-

ширение $\overline{Y} \in M(X)$ таково, что $\overline{Y} \leqslant Y_{\mu}$ для любого $\mu \in \Omega$, то $\overline{Y} \leqslant Y''$. * Непрерывное отображение двух расширений пространства Х называется допустимым, если оно оставляет точки Х неподвижными.

Определение 7. Пусть расширения $Y_1, Y_2 \subset M(X)$. Скажем, что расширения Y_1 и Y_2 принадлежат к одному классу замкнутости и будем писать $Y_1 \approx Y_2$, если существует расширение $Y \in M(X)$ такое, что $Y \geqslant Y_1$ и $Y \geqslant Y_2$ и допустимые отображения $\varphi_1 \colon Y \to Y_1$ и $\varphi_2 \colon$ $Y \rightarrow Y_2$ совершенны.

Можно показать, что отношение \approx на множестве M(X) является отношением эквивалентности. Таким образом, всё множество M(X) разбивается отношением \approx на попарно непересскающиеся классы эквивалентности, которые будем называть классами замкнутости. Класс замкнутости расши-

рения $Y \in M(X)$ будем обозначать Z_Y . Лемма 1. Пусть расширения $Y_i \in Z_{Y_0}$, $i=1,\ 2,\dots$, тогда расширение * $\bigvee^{\infty} Y_i \in Z_{Y_o}$.

JI емма 2. $\mathit{Иусть}\ \partial\mathit{л}\mathit{n}\ \mathit{pacширений}\ \mathit{Y}_{\mu} \in \mathit{Z}_{\mathit{Y}_0},\ \mu \in \Omega,\ \mathit{cyществует}\ \mathit{takoe}\ \mathit{pacширение}\ \mathit{Y} \in \mathit{Z}_{\mathit{Y}_0},\ \mathit{uto}\ \mathit{Y} \leqslant \mathit{Y}_{\mu}\ \mathit{\partial\mathit{n}}\mathit{n}\ \mathit{n}\mathit{n}\mathit{o}\mathit{foco}\ \mu \in \Omega.$ $\mathit{Tor}\partial\mathit{a}\ \mathit{so}\ \mathit{m}\mathit{howectbe}\ \mathit{M}(\mathit{X})\ \mathit{cymectbyet}\ \mathit{pacширениe}\ \mathit{Y} = \bigwedge_{\in \mathcal{Y}} \mathit{Y}_{\mu}\ \mathit{u}\ \mathit{pacumpequal}\ \mathit{Y} = \mathit{X}$

ширение $Y \in Z_{Y_0}$. \subseteq Условие $Y_{\mu} \in Z_{Y_0}$, $\mu \in \Omega$, здесь существенно. Можно построить пример такого пространства X и расширений Y_1 , $Y_2 \in M(X)$, что существует расшпрение $Y \in M(X)$, для которого $Y_1, Y_2 \geqslant Y$ и тем не менее точная нижняя грань расширений Y_1 и Y_2 во множестве M(X) не существует. Теорема 8. Пусть расширение $Y \subseteq Z_{Y_0}$, $w(Y \setminus X) = \tau$ и ω_{λ} — на-

чальное порядковое число мощности $\max(\aleph_0, \tau)$.

Тогда существует линейно упорядоченное множество $M = \{Y_{\alpha}, \alpha \in$ $\in R(\omega_{\lambda}\omega_{1})$ метрических расширений пространства X (здесь $R(\omega_{\lambda}\omega_{1})$ трансфинитная прямая длины $\omega_{\lambda}\omega_{1}$, где $\omega_{\lambda}\omega_{1}$ — порядковое произведение τ рансфинитных чисел ω_{λ} и ω_{\pm} (5)) τ аких, что:

- 1) $Y_{\alpha} = Z_{Y_0}$ discrete $a = R(\omega_{\lambda}\omega_1);$ 2) $Y_{\alpha_1} < Y_{\alpha_2}$, echu $1 \le \alpha_1 < \alpha_2 < \omega_{\lambda}\omega_1$, ede $Y_1 = Y;$
- 3) $Y_{\alpha} = \bigvee_{1 \leq \beta < \alpha} Y_{\beta} npu \ 1 < \alpha < \omega_{\lambda}\omega_{1};$ $4 \ Y_{\alpha} = \bigwedge_{\beta > \alpha} Y_{\beta} npu \ \alpha \in R(\omega_{\lambda}\omega_{1});$

5) dim $Y_{\alpha} = \max(\dim Y, 1)$ dar anoboro $\alpha > 1, \alpha \in R(\omega_{\lambda}\omega_{1})$.

До сих пор мы изучали структуру некоторого фиксированного класса замкнутости пространства X. Рассмотрим теперь множество Z(X) всех классов замкнутости пространства X.

Определение 8. Пусть Z_{Y_1} и $Z_{Y_2} \in Z(X)$. Скажем, что $Z_{Y_1} \leqslant Z_{Y_2}$ если существуют такие расширения $\widetilde{Y}_1 \in Z_{Y_1}$ и $\widetilde{Y}_2 \in Z_{Y_2}$, что $\widetilde{Y}_1 \leqslant \widetilde{Y}_2$.

Можно показать, что отношение > является отношением частичного порядка на множестве Z(X), т. е. это отношение обладает свойствами рефлексивности, антисимметричности и транзитивности.

 ${
m Teopema}$ 9. ${\it Hycrb}$ ${\it X-некомпактное}$ метризуемое пространство

веса т. Рассмотрим два случая.

1) B пространстве X существует замкнутое дискретное подмножество мощности τ . Тогда $|M(X)| = |Z(X)| = \exp(\tau^{\aleph})$ (здесь символ $|\cdot|$ обозначает мощность), причем существует $\exp(\tau^{\aleph})$ попарно несравнимых классов замкнутости пространства X.

2) Мощность любого замкнутого дискретного подмножества простран-

ства X меньше τ . B этом случае $\tau = \sum_{i=1}^{\infty} \tau_i, \ \epsilon \partial e \ \mathbf{X}_0 < \tau_1 < \ldots < \tau_i < \ldots$

 $\ldots < \tau$ и имеют место неравенства

$$\exp\left(\sum_{i=1}^{\infty} \tau_{i}^{\aleph_{0}}\right) \leqslant |Z(X)| \leqslant |M(X)| \leqslant \exp\left(\tau^{\aleph_{0}}\right),$$

^{*} Как показано в (1), для любого счетного числа расширений $Y_i \in M(X)$ всегда существует расширение $\bigvee_{i=1}^{\infty} Y_i$.

причем существует $\exp\left(\sum_{i=1}^{\infty} \tau_{i}^{\aleph^{o}}\right)$ попарно не сравнимых классов замкну-

тости пространства Х.

Пусть далее $M_p(X)$ — подмножество множества M(X), состоящее из всех полных метрических расширений пространства X, и $Z_{p}(X)$ — $no\partial mho$ жество множества Z(X), элементами которого являются все классы замкнутости, содержащие полные метрические расширения пространства Х. Tогда в обоих рассмотренных выше случаях $|M_p(X)| = |Z_p(X)| = \exp au$ и существует ехр т попарно несравнимых классов замкнутости полных метрических расширений пространства Х.

III. Пусть X— фиксированное некомпактное метризуемое пространство. Рассмотрим банахову алгебру R^x всех непрерывных ограниченных функций, определенных на пространстве X с нормой $||f|| = \sup_{\mathbf{X}} |f(x)|, f \in \mathbb{R}^{\mathbf{X}}$.

Пусть далее Y — метрическое расширение пространства X и Φ_{x} : $R^{y} \rightarrow R^{x}$ отображение, определенное формулой $\Phi_{\mathbf{y}}(f) = f|_{\mathbf{x}}, f \in \mathbb{R}^{\mathbf{y}}$. Нетрудно проверить, что отображение Фу является изометрическим вложением алгебры $R^{\mathbf{Y}}$ в алгебру $R^{\mathbf{X}}$. Пусть $R_{\mathbf{Y}} = \Phi_{\mathbf{Y}}(R^{\mathbf{Y}})$.

T е о р е м а 10. Hyсть функция $f \in R = \bigcap_{Y \in M(X)} R_Y$.

Tог ∂a возможны $oldsymbol{ au}$ ри cлучая.

1) Отображение $f: X \to R^1$ постоянно, $\tau.$ e. f(x) = a для любой точки $x \in X$.

- 2) Пространство X можно представить в виде $X=X_1 \cup X_2$, где X_1 , $X_2 \neq \phi, X_1 \cap X_2 = \phi, X_1$ — локально компактное сепарабельное открытое nodмножество пространства X, причем отображение $f|_{X_i}: X_i \to f(X_i)$ совершенно, отображение $f|_{X_2}: X_2 \to R^1$ постоянно и множество f(X) является компактом.
- 3) Пространство X локально компактно и сепарабельно, отображение $f \colon X o f(X)$ совершенно, и множество $[f(X)]_{\mathbb{R}^1} \diagdown f(X)$ состоит из одной точки.

Обратно, если функция $f \in R^x$ удовлетворяет условиям одного из пунк $ros 1)-3), ro f \in R = \bigcap_{Y \in M(X)} R_Y.$

Теорема 11. Соответствие между метрическими расширениями пространства X и подалгебрами $R_{\scriptscriptstyle Y}$ алгебры $R^{\scriptscriptstyle X}$ является взаимно однозначным, т. е. различным расширениям пространства Х соответствуют различные подалгебры R_Y алгебры R^X . Далее, если расширения $Y_i, Y_i \subseteq M(X)$, то включение $R_{Y_1} \subseteq R_{Y_2}$ выполняется тогда и только тогда, когда $Y_1 \leqslant Y_2$.

Спедствие. Пусть расширения Y_1 и $Y_2 \in M(X)$, тогда неравенство $Y_{\scriptscriptstyle 1} \leqslant Y_{\scriptscriptstyle 2}$ выполняется в том и только в том случае, если для бикомпактных расширений βY_1 и βY_2 пространства X справедливо неравенство $\beta Y_1 \leqslant \beta Y_2$. (Здесь ВУ — максимальное бикомпактное расширение пространства У.)

T е о р е м а 12. Пусть расширения $Y_{\mu} \subseteq M(X)$, $\mu \subseteq \Omega$. Тогда расширение $Y \subseteq M(X)$ в том и только в том случае является точной нижней гранью расширений $Y_{\mu}, \, \mu \in \Omega, \, ec$ ли $\, R_{Y} = \bigcap_{\mu} R_{Y_{ij}} \,$

 Π емма 3. Пусть Y_0 — метрическое расширение пространства X, тогда имеет место равенство $R^X = \bigcup_{Y \in Z_{Y_0}} R_Y$

Следствие. Пусть Y_0 — метрическое расширение пространства X, тогда имеет место равенство $\beta X = \sup \beta Y$. $Y \supseteq Z'Y_0$

Механико-математический факультет Московского государственного университета им. М. В. Ломоносова

Поступило 3 V 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. К. Бельнов, Вестн. Московск. унив., математика, механика, 4, 60 (1970). ² В. К. Бельнов, Вестн. Московск. унив., математика, механика, 5, 7 (1970).

³ J. M. Aarts, Fund. Math., 63, № 1, 27 (1968).

⁴ Ю. М. Смирнов, ДАН, 168, № 3, 528 (1966). ⁵ Ф. X а у с д о р ф, Теория множеств, М.— Л., 1934.