Д. В. Синегрибов^{1,2}, В. В. Андреев¹, И. А. Серенкова²

¹Гомельский государственный университет имени Франциска Скорины, г. Гомель, Республика Беларусь, ²Гомельский государственный технический университет имени П. О. Сухого, г. Гомель, Республика Беларусь

ОГРАНИЧЕНИЯ НА МАССУ ДОПОЛНИТЕЛЬНОГО Z'–БОЗОНА ДЛЯ SSM НА ILC

Введение. Стандартная Модель (СМ) согласуется практически со всеми экспериментальными данными, но имеет и явные недостатки, которые являются причиной для дальнейшей проверки СМ и поиска «новой» физики за ее пределами. За счет расширения калибровочной группы СМ, появляются различные экзотические фермионы, тяжелые нейтрино, дополнительные нейтральные (Z') и заряженные (W') бозоны.

Z'-бозон – массивная, электрически-нейтральная, синглетная по цвету, гипотетическая частица, имеющая спин 1 [1]. Задача поиска Z'-бозона является актуальной, поскольку содержится в программе исследований Международного линейного коллайдера (ILC) [2] и Компактного линейного коллайдера (CLIC).

Современные ограничения на массу Z'-бозона (4–5 ТэВ в зависимости от модели) [3], полученные на Большом адронном коллайдере (LHC), заметно больше максимальной энергии, планируемой на ILC и CLIC. Поэтому можно исследовать только косвенные Z' эффекты, вызванные $\gamma - Z - Z'$ интерференцией. Такие эффекты должны проявляться в виде отклонения регистрируемой наблюдаемой от поведения СМ. За счет значительно меньшего фона, высокой энергии (порядка ТэВ), большей светимости и наличия возможности поляризации e^+ и e^- пучка, e^+e^- ускорители следующего поколения позволяют исследовать масштабы и сценарии «новой» физики, недоступные на LHC [4].

Цель исследования – оценить возможность улучшения ограничений на массу Z' – бозона на основе разработанной методики для e^+e^- ускорителей следующего поколения.

В данной работе не учитывается *Z* – *Z'* массовое смешивание и взаимодействия с другими экзотическими частицами за пределами СМ.

Полученные ограничения полезны для оптимизации будущего эксперимента и важны для идентификации свойств «новой» физики.

1. Дифференциальное сечение. Для проведения анализа нужно получить дифференциальное сечение, содержащее эффективные параметры Z', линейно входящие в выражение. Условие линейности необходимо для применения статистического критерия и впоследствии получения ограничений на такие параметры.

Исследуемая реакция в приближении Борна исывается *s* канальными диаграммами Фейнмана, представленными на рисунке 1.

Рисунок 1 – Диаграммы Фейнмана для процесса $e^+e^-
ightarrow \overline{ff} \left(f \neq e
ight)$

В результате было получено дифференциальное сечение с частично поляризованными начальными пучками [5], которое записывается в виде:

$$\frac{d\sigma^{SM+Z'}}{dz} \left(P_{e^+}, P_{e^-}\right) = N_C \left(1 - P_{e^+} P_{e^-}\right) \frac{\alpha^2 \beta \pi}{8s} \times$$

$$\times \left[\left(1 - z\beta_f\right)^2 Q_1^{SM+Z'} + \left(1 + z\beta_f\right)^2 Q_2^{SM+Z'} + Q_3^{SM+Z'} \right].$$
(1)

В выражении (1) и (2): $z \equiv \cos \theta$ (θ – угол между e^- и f) и $\beta_f = (1 - 4m_f^2 / s)^{1/2}$.

Параметры $Q_{1,2,3}^{SM+Z'}$. определяются комбинациями $q_{\lambda_e\lambda_f}^{SM+Z'}$. и эффективной поляризацией $P_{eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^+}P_{e^-})$:

$$Q_{1}^{SM+Z'} = p_{eff}^{-} \left| q_{LR}^{SM+Z'} \right|^{2} + p_{eff}^{+} \left| q_{RL}^{SM+Z'} \right|^{2},$$

$$Q_{2}^{SM+Z'} = p_{eff}^{-} \left| q_{LL}^{SM+Z'} \right|^{2} + p_{eff}^{+} \left| q_{RR}^{SM+Z'} \right|^{2},$$
(2)

$$Q_{3}^{SM+Z'} = 2\eta_{f}^{2} \left(p_{eff}^{-} Re \left[q_{LL}^{SM+Z'} q_{LR}^{*SM+Z'} \right]^{2} + p_{eff}^{+} Re \left[q_{RL}^{SM+Z'} q_{RR}^{*SM+Z'} \right]^{2} \right),$$

В формуле (4): $\eta_f = (1 - \beta_f^2)^{1/2}$; $p_{eff}^{\pm} = 1 \pm P_{eff}$.

Параметры $q_{\lambda_c \lambda_f}^{SM+Z'}$, содержащие все параметры Z'-бозона (массу, ширину и константы связи) определяются формулами:

$$q_{\lambda_e\lambda_f}^{SM+Z'} = \sum_i \frac{sg_{i,e}^{\lambda_e}g_{i,f}^{\lambda_f}}{s - M_i^2 + iM_i\Gamma_i},$$
(3)

где $g_{i,f}^{L,R} \equiv g_{i,f}^{-,+}$ – фермионные константы связи с бозонами $i = \gamma, Z, Z'$ с соответствующими массами M_i и ширинами Γ_i .

2. Методика модельно-зависимого анализа. Для получения ограничений вводятся следующие параметры, характеризующие отклонение наблюдаемой от поведения CM:

$$\Delta Q_{1} \left(p_{eff}^{-}, p_{eff}^{+} \right) = Q_{1}^{SM+Z'} - Q_{1}^{SM} = p_{eff}^{-} \Delta q_{LR} + p_{eff}^{+} \Delta q_{RL},$$

$$\Delta Q_{2} \left(p_{eff}^{-}, p_{eff}^{+} \right) = Q_{2}^{SM+Z'} - Q_{2}^{SM} = p_{eff}^{-} \Delta q_{LL} + p_{eff}^{+} \Delta q_{RR},$$
 (4)

$$\Delta q_{\lambda_e \lambda_f} = \left| q_{\lambda_e \lambda_f}^{SM+Z'} \right|^2 - \left| q_{\lambda_e \lambda_f}^{SM} \right|^2.$$
⁽⁵⁾

Для получения ограничения на массу Z' –бозона разработана методика модельнозависимого анализа, для выполнения которой необходимо:

I. Использовать статистический критерий согласия для получения ограничений на параметры отклонения ΔQ_i . Для получения ограничений на параметры отклонения ΔQ_i используется функция χ^2 , которая записывается:

$$\chi^{2}\left(\Delta Q_{i}\right) = \sum_{i=1}^{bins} \left[\frac{\Delta N_{i}\left(\Delta Q_{i}\right)}{\delta N_{i}^{SM}}\right]^{2} \leq \chi^{2}_{min} + \chi^{2}_{C.L.},$$
(6)

где $N_i = N_i^{SM+Z'} \left(Q_i^{SM+Z'} \right) - N_i^{SM}$ (здесь N_i^{model} – число событий для определенного уг-

лового интервала).

Для определения условия используется следующее предположение: будущие экспериментальные результаты по измерению наблюдаемой согласуются с предсказаниями СМ в пределе ожидаемой точности измерений. На основе критерия (6) можно определить нижнюю границу для массы Z'-бозона, выше которой эффекты Z' статистические неразличимы от предсказаний СМ.

II. Произвести статистическую обработку ограничений, в следствии чего получитьоверительные интервалы для необходимого уровня достоверности. Извлекая доверительные интервалы важно учитывать, что имеется 3 вероятности: вероятность для эллиптической области; вероятность для прямоугольной области, которая зависит от коэффициента корреляции; вероятность горизонтальной полосы.

III. Использовать две различные наблюдаемые для составления системы уравнений и в результате ее решения получить доверительные интервалы на параметры отклонения $\Delta q_{\lambda\lambda\lambda}$. Для составления системы уравнений можно использовать одну наблюдаемую при разной начальной поляризации и получить следующие выражения:

$$\Delta q_{LR} = \frac{p_{eff}^{+,b} \Delta Q_{1}^{a} - p_{eff}^{+,a} \Delta Q_{1}^{b}}{p_{eff}^{-,a} p_{eff}^{+,b} - p_{eff}^{+,a} p_{eff}^{-,b}}, \quad \Delta q_{RL} = \frac{p_{eff}^{-,a} \Delta Q_{1}^{b} - p_{eff}^{-,b} \Delta Q_{1}^{a}}{p_{eff}^{-,a} p_{eff}^{+,b} - p_{eff}^{+,a} p_{eff}^{-,b}},$$

$$\Delta q_{LL} = \frac{p_{eff}^{+,b} \Delta Q_2^a - p_{eff}^{+,a} \Delta Q_2^b}{p_{eff}^{-,a} p_{eff}^{+,b} - p_{eff}^{+,a} p_{eff}^{-,b}}, \quad \Delta q_{RR} = \frac{p_{eff}^{-,a} \Delta Q_2^b - p_{eff}^{-,b} \Delta Q_2^a}{p_{eff}^{-,a} p_{eff}^{+,b} - p_{eff}^{+,a} p_{eff}^{-,b}}, \tag{7}$$

где значения $p_{e\!f\!f}^{\pm,a}$ и $p_{e\!f\!f}^{\pm,b}$ вычисляются для набора поляризаций $a = \left\{ P_{a^{-}} = a_1, P_{a^{+}} = a_2 \right\} \text{ if } b = \left\{ P_{a^{-}} = b_1, P_{a^{+}} = b_2 \right\}.$

IV. Получить выражение для полной ширины распада $Z' \to f\bar{f}$ [6] (ширина распада $Z' \rightarrow W^+W^-$ не учитывается, поскольку в данной работе не рассматривается Z - Z' массовое смешивание).

V. Использовать полученную ширину распада и константы связи для выбранной модели Z', для получения ограничений на массу.

3. Результаты для SSM. «Последовательная Стандартная Модель» (SSM) основана на калибровочной группе $SU(2)_{B-L} \times U(1)_{Y} \times U(1)_{Y'}$ и является наиболее популярной, поскольку фермионные константы связи Z' выбираются равными Z [1].

Для получения ограничений, которые представлены на рисунке 2, использовались проектные параметры ILC [2]. Наблюдаемой является число событий при разной начальной поляризации ($a = \{0; 0\}$ и $b = \{-0, 8; -0, 5\}$).

ILC (1 T₃B), 95 % C.L. b а $e^+e^- \rightarrow b \bar{b}$ RL $e^+e^- \rightarrow C\bar{C}$ LR () $e^+e^- \rightarrow \tau \bar{\tau}$ RR LL $e^+e^- \rightarrow \mu \bar{\mu}$ 7 0 0 1 2 3 5 6 1 2 3 4 5 6 7 4 *М_{Z'}, ТэВ*

Рисунок 2 – Пороги обнаружения Z' –бозона для SSM ((а) – рассматриваются различные конечные фермионы для комбинации LR, (b) – рассматриваются различные комбинации $\lambda_e \lambda_f$ для процесса $e^+e^- \rightarrow \mu\bar{\mu}$)

Для результата (*a*), наилучшие ограничения получены для аннигиляции в мюонную пару, на основе чего можно заметить зависимость ограничений от массы конечного фермиона. Ограничения для $c\bar{c}$ и $b\bar{b}$ значительно хуже, поскольку экспериментально нельзя различить кварковые и антикварковые струи, поэтому для такого случая фазовый объем уменьшается на 2 (за счет чего значительно уменьшается число событий). Для результата (*b*), наилучшие ограничения, равные 6,730 ТэВ, получены для комбинации *LL* (аналогичное ограничение на LHC равно 5,150 ТэВ).

Анализируя полученные результаты, можно заключить, что потенциальные возможности ILC позволяют улучшить существующие ограничения на массу Z'-бозона.

Литература

1. Leike, A. The Phenomenology of extra neutral gauge bosons / A. Leike // Phys. Rept. – 1999. – Vol. 317. – P. 143–250.

2. The International Linear Collider: Report to Snowmass 2021 / A. Aryshev [et al.] // DESY-22-045, FERMILAB-FN-1171-PPD-QIS-SCD-TD, PNNL-SA-1608845, 2021. – P. 220.

3. Review of Particle Physics / R. L. Workman [et al.] // Prog. Theor. Exp. Phys. – 2022. – Vol. 083C01. – P. 995–999.

4. Probing the minimal $U(1)_x$ model at future electron-positron colliders via fermion pair-production channels / A. Das, P. S. Bhupal Dev, Yu. Hosotani, S. Mandal // Phys. Rev. D. – 2022. – Vol. 105, Nº 11. – P. 115030.

5. Sinegribov, D. V. Model-independent constraints on extra neutral heavy bosons effective parameters at the future e^+e^- colliders / D. V. Sinegribov, V. R. Kurylenka, V. V. Andreev, I. A. Serenkova // Phys. Part. Nuclei Lett. – 2024. – Vol. 21. – P. 658–660.

6. Dreiner, H. K. Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry / H. K. Dreiner, H. E. Haber, S. P. Martin // Phys. Rept., 494, FERMILAB-PUB-09-855-T. – 2010. – P. 1–196.