Г. Ю. Тюменков

Гомельский государственный университет имени Франциска Скорины, г. Гомель, Республика Беларусь

РАДИАЛЬНЫЕ ФУНКЦИИ ПЛОТНОСТИ ВЕНЕРЫ: РАЗВИТИЕ *РVM*-МОДЕЛИ

Введение. Исследование внутреннего строения планеты Венера методами сейсмического анализа пока недоступно из-за физических условий на её поверхности: высокое давление в 9,3 Мпа и температура порядка 740 К. Ещё с советских времён и поныне доставленное научное оборудование не функционировало более часа в таких условиях. Однако, сейчас появляется надежда на современный проект Роскосмоса – АМС «Венера–Д», спускаемый модуль и сейсмометр которой будет способны проработать там около двух месяцев.

Поэтому внутреннее строение Венеры описывается в рамках модельных представлений [1–3], опирающихся на недостаточную базу данных [4]. Одной из признанных моделей считается *PVM*–модель Венеры [5], развивающая тему её землеподобия.

Развитие *РVМ*–модели. С момента возникновения *PVM*–модель активно развивается в различных направлениях, опираясь на данные о гравитационном поле и топографии: уточняется масса планеты, средний радиус, безразмерный момент инерции, приливное число Лява k_2 [6], [7]. Нас же будут интересовать радиальные функции плотности $\rho_i(r)$ для пяти шаровых слоёв в приближении землеподобия, поведения которых мы уже касались в работе [8].

Целью же данной работы будет являться уточнение значений коэффициентов полиномиальных функций плотности шаровых слоев, полученных в [8], с более детальным учётом значений плотностей на границах слоёв, сохраняя их толщины. В основе последующих расчётов останутся неизменными такие характеристики Венеры, как:

- масса без атмосферы - 4,86682 · 10²⁴ кг;

- средний радиус 6 051,8 км;
- плотность коры -2800 кг/м³;
- плотность в центре 11 742 кг/м³;
- допустимые значения радиуса ядра (нижнего) от 2 800 км до 3 500 км;
- допустимые значения толщины коры от 12 км до 65 км.

Далее, основываясь на исходной *PVM*–модели [5], рассчитаем значения плотностей на границах слоёв, введя соответственно верхнюю $\rho_{i(gepx)}(r)$ и нижнюю $\rho_{i(humken)}(r)$ плотности. Но делаем это с большей точностью, чем в [8], сохраняя три знака после запятой, и формируем таблицу 1. Уточнения в мантиссах выделены жирным шрифтом (далее также).

№ слоя	<i>гі в РVМ</i> , км	$\rho_{i(HUJWH)}(r), \kappa\Gamma/M^3$	$ρ_{i(bepx)}(r),$ κγ/m ³
1	0	11 742,0 44	_
1	3 207	_	9 591,5 33
2	3 207	5 387,5 13	-
2	5 303	_	4 403,3 32
3	5 303	4 078,4 09	_
3	5 579	_	3 765,0 12
4	5 579	3 550,8 43	—
4	5 980	_	3 276,0 40
5	5 980	2 800,0 23	_
5	6 050	_	2 800,0 37

Таблица 1 – Значения плотностей на границах слоёв

Так как рассматриваем три приближения для возможных значений размеров ядра (нижнего) и коры, то введем дополнительный индекс приближения j = 1,2,3 и положим $R = 6\ 051,8$ км. Функции плотности слоёв для различных приближени $\rho_i^j(r)$ будем определять, исходя из общего вида

$$\rho_i^{j}(r) = A_i^{j} + B_i^{j} \cdot r / R + C_i^{j} \cdot (r / R)^2 + D_i^{j} \cdot (r / R)^3,$$

на основе использования:

– неизменной функции плотности коры $\rho_5^{j}(r) = \rho_5(r);$

– линейного приближения и значений соответствующих верхних и нижних плотностей слоёв при неизменных толщинах для $\rho_3^j(r)$ и $\rho_4^j(r)$;

– параболического приближения с малым изменением значений верхних и нижних плотностей и толщины слоя для $\rho_2^j(r)$;

– кубического приближения с малым изменением значения верхней плотности слоя для $\rho_1^j(r)$ при той же нижней, а также нормировки функции плотности на массу без атмосферы.

Результаты обновлённого моделирования для трёх приближений сведены в таблицы 2, 3, 4.

Приближение I предполагает минимизацию размеров толщины коры и радиуса ядра Венеры, согласно [3]: $h_K = 12$ км, $r_R = 2\,800$ км.

№ слоя	Функция плотности слоя $\rho_i^1(r)$, кг/м ³	Диапазон расстояний от центра, км
1	$\rho_1^1(r) = 11\ 742,008 - 170,217 \cdot r / R5\ 402,072 \cdot (r / R)^2 - 3\ 645,006 \cdot (r / R)^3$	0–2 800
2	$\rho_2^1(r) = 7\ 071,222 - 2\ 466,637 \cdot r / R - 266,113 \cdot (r / R)^2$	2 800–5 363
3	$\rho_3^1(r) = 10\ 167, 645 - 6\ 871, 322 \cdot r / R$	5 363–5 639
4	$\rho_4^1(r) = 7\ 415, 240 - 4\ 147, 334 \cdot r / R$	5 639–6 039,8
5	$\rho_5^1(r) = 2\ 800$	6 039,8–6 051,8

Таблица 2 – Функции плотности для шаровых слоёв для Приближения І

Приближение II предполагает максимизацию размеров толщины коры и радиуса ядра Венеры, согласно [3]: $h_K = 65$ км, $r_A = 3500$ км.

Таблица 3 – Функции плотности для шаровых слоёв для Приближения II

№ слоя	Функция плотности слоя $\rho_i^2(r)$, кг/м ³	Диапазон расстояний от центра, км
1	$\rho_1^2(r) = 11\ 742,007 - 170,229 \cdot r/R - 5\ 402,118 \cdot (r/R)^2 - 3\ 633,141 \cdot (r/R)^3$	0–3 500
2	$\rho_2^2(r) = 6\ 047, 221 - 2\ 010, 332 \cdot r / R - 260, 611 \cdot (r / R)^2$	3 500–5 310
3	$\rho_3^2(r) = 10\ 107,404 - 6\ 871,308 \cdot r / R$	5 310–5 586
4	$\rho_4^2(r) = 7\ 378,931 - 4\ 147,330 \cdot r / R$	5 586–5 986,8
5	$\rho_5^2(r) = \rho_5(r) = 2\ 800$	5 986,8–6 051,8

Приближение III использует средние размеры толщины коры и радиуса ядра, согласно [3]: $h_K = 38,5$ км, $r_A = 3$ 150 км.

№ слоя	Функция плотности слоя $\rho_i^3(r)$, кг/м ³	Диапазон расстояний от центра, км
1	$\rho_1^3(r) = 11\ 742,006 - 170,105 \cdot r / R - 5\ 402,005 \cdot (r / R)^2 - 3\ 660,017 \cdot (r / R)^3$	0–3 150
2	$\rho_2^3(r) = 6\ 794,041 - 2\ 467,048 \cdot r / R - 266,222 \cdot (r / R)^2$	3 150–5 336,3
3	$\rho_3^3(r) = 10\ 138,833 - 6\ 872,832 \cdot r / R$	5 336,3–5 612,3
4	$\rho_4^3(r) = 7\ 397, 367 - 4\ 147, 306 \cdot r / R$	5 612,3–6 013,3
5	$\rho_5^3(r) = \rho_5(r) = 2\ 800$	6 013,3–6 051,8

Таблицу 4 – Функции плотности для шаровых слоёв для Приближения III

Уточнённые функции плотности для всех *Приближений*, а также исходная функция из [5] представлены на рисунке 1.

Заключение. Таким образом, в работе получен уточнённый вид функций плотности планеты Венеры для пяти шаровых слоёв в трёх физически правомерных приближений с допустимыми вариациями радиуса её ядра (нижнего) и толщины коры. Эти функции могут рассматриваться как варианты оптимизации функций плотности в базовой *PVM*–модели. Хотелось бы, чтобы полученные результаты смогли быть полезными при более строгом моделировании внутреннего строения Венеры на основе новейших сейсмологических наблюдений миссии Венера–Д [9].

Литература

1. The deep interior of Venus, Mars and the Earth: a brief review and the need for planetary surface–based measurements / A. Mocquet, P. Rosenblatt, V. Dehant, O. Verhoeven // Planet and Space Sci. – 2011. – Vol. 5. – P. 1048–1061.

2. Archinal, B. A. Report of the IAU Working Group on Cartographic Coordinates and Rotation Elements: 2015 / B. A. Archinal [et al.] // Celest. Mech. Dyn. Astr. – 2018. – Vol. 130, N 22. – P. 1–46.

3. Dumoulin, C. Tidal Constraints of the Interior of Venus / C. Dumoulin, G. Tobie, O. Verhoeven, N. Rembaux // J. Geophys. Res. Planet. – 2017. – Vol. 122, № 6. – P. 1338–1352.

4. Venus Fact Sheet [Electronic resource]. – Mode of access: https://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html/. – Date of access: 04.06.2024.

5. Жарко, Н. В. Физическая модель Венеры / В. Н. Жарков, И. Я. Засурский // Астрономический вестник. – 1982. – Т. 16, № 1. – С. 18–28.

6. Гудкова, Т. В. О параметрах землеподобной модели Венеры / Т. В. Гудкова, В. Н. Жарков // Астрономический вестник. – 2019. – Т. 53, № 1. – С. 1–4.

7. Гудкова, Т. В. Модели внутреннего строения землеподобной Венеры / Т. В. Гудкова, В. Н. Жарков // Астрономический вестник. – 2020. – Т. 54, № 1. – С. 24–32.

8. Новикова, О. В. Функция плотности для модели землеподобной Венеры / О. В. Новикова, Г. Ю. Тюменков // Проблемы физики, математики и техники. – 2024. – № 3(60). – С. 23–26.

9. В МАИ раскрыли подробности перспективного проекта России «Венера-Д» [Electronic resource]. – Mode of access: https://mai.ru/press/news/detail.php?ID=176215/. – Date of access: 24.09.2024.

V. Yu. Haurysh¹, V. V. Andreev² ¹Sukhoi State Technical University of Gomel, Gomel, Republic of Belarus, ²Francisk Skorina Gomel State University, Gomel, Republic of Belarus

ELECTROWEAK CHARACTERISTICS OF LIGHT π -, ρ -MESONS

Introduction. The researching of composite quark-antiquark systems is associated with the study of electroweak characteristics of hadrons, such as meson form factors, decay constants etc. To a date a sufficient volume of experimental data has been accumulated [1], including on the decays of light pseudoscalar π^{\pm} – and ρ^{\pm} -vector mesons. Since such systems are purely relativistic [2], it becomes possible to test phenomenological approaches and models for studying the properties of coupled $u\overline{d}$ -systems. Also, the equality of the masses of constituent and quarks in the indicated mesons significantly simplifies both the calculation of the model parameters and calculations.

The paper presents a method for calculating the electromagnetic mean-square radii of pseudoscalar π^{\pm} – and vector ρ^{\pm} -mesons in a composite quark model based on the point form of Poincaré-invariant quantum mechanics. The authors have shown that the usage of parameters obtained from leptonic decays $\pi^{\pm} \rightarrow \ell^{\pm} \nu_{\ell}$ and $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau}$ as well as the pseudoscalar density constant $g_{p^{\pm}}$ [3, 4], leads to results for the mean-square radii of the pseudoscalar π^{\pm} – and vector ρ^{\pm} -mesons that correlate with modern experimental data and other models. As a result, a self-consistent model that describes the electroweak characteristics of pseudoscalar and vector light sector mesons is proposed.

1. Basic features of the model. Below we define the state vector of the meson with spin $J = \ell + S$ ($\ell = 0, S = 0, 1$) and its' projection μ , 4-momentum Q^{μ} ($Q^2 = M^2$, $V^{\mu} = Q^{\mu} / M$) and mass M in the point form of dynamics