Table 1 — Comparison of the values of the root-mean-square radii of light mesons

R.m.s. radii [1] [5] This work
<r.>,fm 0.659+0.004 - 0.534+0.006
<r.>,fm - 0.748 0.615+0.006

Analysis of table 1 shows that the proposed model gives values comparable with modern
experimental data and other models. It should be noted that the contribution of the structure
functions of constituent quarks was not investigated in the work: the usage of mean-square radii

<rq2> =a / mj [6] can lead to values close to those of experimental data.

Conclusion. The paper presents a calculation of the electromagnetic characteristics of
mesons consisting of quarks. It is shown that the use of model parameters obtained from
leptonic decays and mesons leads to results on the electromagnetic mean-square radii of mesons
that correlate with experimental data and other models.
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SPIN 1/2 PARTICLE WITH ANOMALOUS MAGNETIC MOMENT
AND POLARIZABILITY IN THE EXTERNAL MAGNETIC FIELD

In the paper [1], within the general method by Gel’fand—Yaglom [2], starting with the

extended set of representations of the Lorentz group, it was constructed a generalized equation
for a spin 1/2 particle with two additional characteristics (concerning general formalism see
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in [3], [4]). After eliminating the accessory variables of the complete wave function, it was
derived the generalized Dirac-like equation, the last includes two additional interaction terms
which are interpreted as related to anomalous magnetic moment and a second additional
characteristics:

{ (0, +|eA:)+ [ablF[ab] =910, +ieA) IRy, - M}\on; (1)

2M

the parameter pn corresponds to anomalous magnetic moment of a spin 1/2 particle, and the

second parameter o looks as related to a polarizability of the particle. Let us consider this
equation in presence of the uniform magnetic field. We will apply the cylindrical coordinates

and the tetrad formalism. Let the field be oriented along the axis z, A, = +eBr?/2, F, =B,
Then the above equation (1) takes on the form

2
{{yoiat+y1(6r+2ij+y—+(i8¢—e8r2/2+ij12) +
r r
(2)
N y?’iaz][u% j12F12j+iA—“ j2F, —M }‘P ~0,

We will apply the following substitution for the wave function

f,(r)
o (r o
N7 :ie—utelmq)elkz 2( ) :ie—lltelmq)elkzF(r).
Jr G|
fi(r)
Let us simplify the notations eB = B, eF,, = +B, ep=p, ec =, and
_d m+1/2+Br?/2 _d m-1/2+Br*/2
Auip =2 F ) bm—llZ - . ’
dr r dr r

the equation (2) leads to

—a, ., () 2E|i/(|52+i +f(r)(m+k)(1 ZiE/IGZ fl(r)(—ga—M“—Mj=0,
by, Ts(r) ZBMGz—i +f4(r)(m—k)(1+2if/|62 fz(r)(+izB—M“—Mj:0,
sz(r)[ j+f(r)(m k)[l %}fg(r)(—f—“—mj:o,
b 1, (r)( j+f (r)(m+k)(1+ 2?402} f4(r)(+iZB—M—Mj:O.
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In order to resolve this system, we will apply the method by Fedorov—-Gronskiy [5]. It is
based on the use of projective operators related to the third spin projection

1/2 0 0 0 1 000 0 00O
Y:ij12:0 -1/2 0 o;P:oooo F)20100_
0 0 1/2 0 1010 "~ o0 o0 O
0 0 0 -1/2 0 00O 0001

according to this approach, each projective constituent is determined through one function:
f, 0

0 f,
f F(r), Y.(r)= F,(r).

.(r)= 0
f

3

0

4
We impose differential constraints that permit us to transform all equations into algebraic ones:
a,.,,H(r)=CF, b, ,,R(r)=C,F,

taking into account these constraints we get the algebraic system

—C( Bo +|jf +(m+k)(1 j (—iB—”—M
2M? 2M

Bo iB
cl(WH]f +(m- k)(l j (—ﬁ—m f, =0,
—cz( Bo Jf +(m+k)(1+ 1Bo )f2+(+”3—“—Mjf4 =0,

2M? 2M? 2M

Without loss of generality, we can equate two parameters, C, =C, =C, so obtaining
(am+1/2 bm—1/2 _CZ) R(r) =0, (bm—llz A1/ _CZ) F(r)=0; 3)

then the above algebraic system reads simpler
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iBu iBo Bo . _
_(NJFMJ f,+0- f2+(k+m)(l—W] f3—C(2|v|2 +IJ f, =0,

iBu Bo . iBo _
0- f1+(m—Mjf2 +C(W—|] f3+(m—k)[l+ ZMZJ f4 —0,

(4)

(m—k%}—'&’jn+c(£%%+{jg—(§%4mﬂ)g+ow4:Q

Bo . iBo iBu _
_C(W_IJ f1+(m+k)(1+wj f2 +0- f3 +(N—Mjf4 =0.

In explicit form the equations (3) read

2 B _ 2

d El +1£+ —lerz—lB—mB—Cz—w F =0,
dr* rdr | 4 2 r

2 B 2
d_l?+1£+ —lerz—lB—mB—Cz—w F,=0.
dr rdr | 4 2 r

Let us transform them to the variable, x = —Br? /2. These equations are related by simple
symmetry B=-B,m=-m, F=F,; so it suffices to solve the equation for

F(x) = x"e™ f,(x):

2 2
f"+(2A+1+2Djft+fgf—iﬁyfiﬂg-f+02f—

X X 4 NG

1 (2A+1)D 11+2m+2C*/B
- =f+ f+=
4 X 4 X

f =0.

In order to have finite solutions, we should use

_ m-=1/2|
- 4

A , D=+1/2 (let B >0).

In this way, in the variable y = —x we get a confluent hypergeometric equation with pa-
rameters

_ 2
c=lm-1/2]|+1, a:Im 1/2|+m+1/2+C_+£
2 2B 2

The polynomial condition a = —n gives the following quantization rule

|m—1/2|2+m+1/2+%), n=0,12,..

CZ:—QB(n+
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Let us turn again to the algebraic system (4). It is convenient to apply dimensionless

quantities
m = E’ L = K’ S =,
M M M
B? Bo _. iBu .
= , =ibo, =iby;
oM’ 2m2 0 om? M
then the system (4) in matrix form reads
—(ibp+1) 0 (E+K)(1—ibo) —C(bo +1) f,
0 (ibpu—-1) c(bo—1i) (E-K)(1+ibo)|| f, o
(E - K)(1—ibo) c(bo +i) —(ibp+1) 0 f,|
—C(bo—1) (E+K)(1+ibo) 0 (ibp—1) f,

From vanishing its determinant, we derive a bi-quadratic equation

det A=b*[(E?~K?+6?)o? —p? | +(E? K2 4c?—1) +
e {2(E2—K2—02+1)u2+2[(E2—K2+cz)2+E2—K2 —02}02+

+ 8(E2—K2)cu} =0.

For parameters E, , > 0, we obtain expressions

+((-1-2¢% +2K?) 0> —dop -2 )b* —c? + 1+ KZTIZ.

2 2
. [iZb(0+u)\/Cz(1+b202) —(bzuc—l) +((—C2+K2)04+02u2)b4+

()

Substituting expression for E,, in the system (5) we can find two types of the wave

functions. The energy spectra depend in a complicated way on additional characteristics; by this
reason these spectra may be studied numerically. By physical reason, two additional parameters

should are imaginary; only then we get the physically interpretable positive energies.
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