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Table 1 – Comparison of the values of the root-mean-square radii of light mesons 
 

R.m.s. radii [1] [5] This work 

π
r   , fm 0.659 0.004  – 0.534 0.006  

ρ
r   , fm – 0.748  0.615 0.006  

 

Analysis of table 1 shows that the proposed model gives values comparable with modern 

experimental data and other models. It should be noted that the contribution of the structure 

functions of constituent quarks was not investigated in the work: the usage of mean-square radii 
2 2

q qr a m  [6] can lead to values close to those of experimental data. 

Conclusion. The paper presents a calculation of the electromagnetic characteristics of 

mesons consisting of quarks. It is shown that the use of model parameters obtained from  

leptonic decays and mesons leads to results on the electromagnetic mean-square radii of mesons 

that correlate with experimental data and other models. 
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SPIN 1/2 PARTICLE WITH ANOMALOUS MAGNETIC MOMENT 

AND POLARIZABILITY IN THE EXTERNAL MAGNETIC FIELD 

 

In the paper [1], within the general method by Gel’fand–Yaglom [2], starting with the 

extended set of representations of the Lorentz group, it was constructed a generalized equation 

for a spin 1/2 particle with two additional characteristics (concerning general formalism see  



 

168 
 

in [3], [4]). After eliminating the accessory variables of the complete wave function, it was 

derived the generalized Dirac-like equation, the last includes two additional interaction terms 

which are interpreted as related to anomalous magnetic moment and a second additional 

characteristics:  
 

 [ ] [ ]

[ ] [ ]2

μ σ
γ ( ) γ ( ) = 0;

2 2

c ab c ab

c c ab c c ab

e e
i ieA j F i ieA j F M

M M

 
        

 
 (1) 

 

the parameter μ  corresponds to anomalous magnetic moment of a spin 1/2 particle, and the 

second parameter σ  looks as related to a polarizability of the particle. Let us consider this 

equation in presence of the uniform magnetic field. We will apply the cylindrical coordinates 

and the tetrad formalism. Let the field be oriented along the axis z , 
2

12= / 2,  =A eBr F B  . 

Then the above equation (1) takes on the form  
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We will apply the following substitution for the wave function  
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Let us simplify the notations 12,  ,  μ μ,   σ σeB B eF B e e    , and  
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the equation (2) leads to  
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In order to resolve this system, we will apply the method by Fedorov–Gronskiy [5]. It is 

based on the use of projective operators related to the third spin projection  

 

 12

1/ 2 0 0 0 1 0 0 0 0 0 0 0

0 1/ 2 0 0 0 0 0 0 0 1 0 0
= = ; = , = ;

0 0 1/ 2 0 0 0 1 0 0 0 0 0

0 0 0 1/ 2 0 0 0 0 0 0 0 1

Y ij P P 





  

 
according to this approach, each projective constituent is determined through one function:  
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We impose differential constraints that permit us to transform all equations into algebraic ones:  

 

 1/2 2 1 1 1/2 1 2 2( ) = , ( ) = ,m ma F r C F b F r C F    

 
taking into account these constraints we get the algebraic system  
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Without loss of generality, we can equate two parameters, 2 1= =C C C , so obtaining  

 

    2 2

1/2 1/2 1 1/2 1/2 2( ) = 0, ( ) = 0;m m m ma b C F r b a C F r      (3) 

 
then the above algebraic system reads simpler  
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(4) 

 

In explicit form the equations (3) read  
 

 

2 2
2 2 21 1

12 2

1 1 1 ( 1/ 2)
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4 2

d F dF m
B r B mB C F

dr r dr r

 
       

 
,  
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.  

 

Let us transform them to the variable, 2= / 2x Br . These equations are related by simple 

symmetry 1 2, , ;B B m m F F    so it suffices to solve the equation for 

1 1( ) = ( ) :A DxF x x e f x   
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In order to have finite solutions, we should use  

 

 
| 1/ 2 |

= ,  = 1/ 2 (let > 0).
2

m
A D B


     

 

In this way, in the variable =y x  we get a confluent hypergeometric equation with pa-

rameters  
 

 
2| 1/ 2 | 1/ 2 1

| 1/ 2 | 1, = .
2 2 2

m m C
c m a

B

  
      

 

The polynomial condition =a n  gives the following quantization rule  
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Let us turn again to the algebraic system (4). It is convenient to apply dimensionless 

quantities  

 

= , = , = ,
m k C

E K c
M M M

 

 
2

2 2

σ μ
= , = σ, = μ;

2 2 2

B B iB
b ib ib

M M M
 

 

then the system (4) in matrix form reads  

 

 

1

2

3
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 (5) 

 

From vanishing its determinant, we derive a bi-quadratic equation  

 

   
2 2

4 2 2 2 2 2 2 2 2det = σ μ 1A b E K c E K c        
 

 

 

    2
2 2 2 2 2 2 2 2 2 2 2 22 1 μ 2 σb E K c E K c E K c           

  
 

 

  2 2 8 σμ = 0.E K   

 

For parameters 
1,2 > 0E , we obtain expressions  
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1/2

2 2 2 2 2 2 21 2 2 σ 4σμ μ 1 .c K b c K         
  

 

Substituting expression for 
1,2E  in the system (5) we can find two types of the wave  

functions. The energy spectra depend in a complicated way on additional characteristics; by this 

reason these spectra may be studied numerically. By physical reason, two additional parameters 

should are imaginary; only then we get the physically interpretable positive energies. 
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