УДК 541.128

ФИЗИЧЕСКАЯ ХИМИЯ

М. С. ХАРСОН, С. Л. КИПЕРМАН

О КАТАЛИТИЧЕСКОЙ АКТИВНОСТИ НИКЕЛЯ, ОЧИЩЕННОГО В УЛЬТРАВЫСОКОМ ВАКУУМЕ

(Представлено академиком Б. А. Казанским 7 V 1971)

В последнее время в исследованиях механизма катализа и адсорбции на металлах используется техника ультравысокого вакуума. Применение ее позволяет получить сведения о закономерностях процессов на поверхностях, свободных от загрязнений. В частности, отмечалось (¹⁻⁴), что поверхность металлов в обычном вакууме до 10⁻⁶ мм рт. ст. оказывается полностью или частично покрытой адсорбированными примесями, удаляемыми лишь в ультравакууме.

В связи с этим возникла проблема «адсорбционного чехла» (¹, ⁵), искажающего истинные закономерности реакций на металлических поверхностях. Вопрос о природе и прочности такого чехла и об эффективности ультравакуумной очистки для его устранения, однако, оставался неяспым. Так, вопреки ожиданиям, работа выхода электрона никеля при переходе от давления 10⁻⁵ до 10⁻¹⁰ мм рт. ст. практически не изменялась (⁶). Рядом исследователей наблюдалась высокая скорость адсорбции на металлах, очищенных в ультравысоком вакууме (7-9). Каталитические реакции на металлах, подвергнутых ультравакуумной очистке, изучались в работах (10-13). Однако в этих исследованиях не проводилось специального сопоставления с результатами, которые могли бы быть получены при постановке экспериментов в тех же самых условиях, но без применения ультравакуума. Последнее должно быть весьма существенным, поскольку ультравакуумпая обработка сопровождается обычно и другими операциями, могущими вносить вклад в наблюдаемые суммарные эффекты. В этом смысле влияние собственно ультравакуумной очистки металлов на Кинетические закономерности протекающих на таких металлах каталитических реакций ранее фактически не исследовалось.

В связи с изложенным нами поставлена задача изучения эффекта ультравакуумной очистки металлов на кинетику каталитических реакций, с сопоставлением влияния отдельных этапов и сопутствующих процессов. Для этого были выбраны модельные реакции разложения (дегидрирования) муравьиной кислоты, гидрирования углекислого газа и изотопного обмена в водороде:

$$HCOOII = CO_2 + H_2, \tag{1}$$

$$CO_2 + 4H_2 = CH_4 + 2H_2O,$$
(2)

$$\mathrm{H}_2 + \mathrm{D}_2 = 2\mathrm{HD},\tag{3}$$

на катализаторах в виде нагреваемых током никелевых проволок (диаметр 0.1 мм, чистота 99.85%) или сублимированных из них пленок.

Опыты проводились в статической установке, сопряженной с омегатронным масс-спектрометром ИПДО-1, в которой достигалось разрежение до 4.10⁻¹⁰ мм рт. ст. с помощью геттеро-ионных титановых насосов. Давление измерялось лампой Байярда — Альперта по вакуумметру ВИ-12, а также, в области обычного вакуума — самозаписывающим мапометром Пирани. Постоянство температуры проволоки катализатора в ходе реакции обеспечивалось специальной автоматической схемой. Попадание паров

Реакция	Характер предварительного воздействия	T-pa, °C	Давление, мм рт. ст.	Относительное изменение скоро- сти реакции после воздействин	Порядок реакции	Эцергия активации, ккал/моль	Примечание	
				1				
НСООН = СО ₂ + Н ₂ на Ni прово- локе	Прогрев катализатора 2 часа при 10 ⁻⁶ мм рт. ст. и 850° С	185-327	0,01-0,002	1	0,85	8,0	Продукты реакции не влинют на ее скорости	
	Ультравакуумная обработка 1·10 ⁻⁹ мм рт. ст.	185327	0,050,003	0,9	0,85	8,5		
СО ₂ +4H ₂ == CH ₄ + +2H ₂ О на плен- ке Ni	Пленка катализатора получена в ва- кууме 1.40 ⁻⁵ мм рт. ст.	320	- 4	1	0,5		Порядок реакции по CO ₂ , остальные компонен- ты не влияют	
	Пленка катализатора получена в ультравакууме 1,5·10 ⁻⁹ мм рт. ст.	32 0	4	0,9	0,5	—		
Н₂ + D₂ == 2HD па проволоке №і	Прогрев катализатора 40 мин при 10 ⁻⁶ мм рт. ст. и 850°	50-100	0,4-0,016	1	0,70	8,9	Порядок реакции по дав лепию	
	Прогрев всей системы 3 часа при 10 ⁻⁶ мм рт. ст. и 400°	50100	0,4-0,016	4,8				
	То же + прогрев катализатора в ультравакууме (4-8)·10 ⁻¹⁰ мм рт. ст. 2,5 часа	70120	0,4—0,016	5,6	0,75	9,1		
	Блокирование катализатора углеро- дом обработкой СН4 при 850°С н 3 мм рт. ст., 20 мин.	90-:-150	0,08÷0,0016	0,1	0,70	8,6		
		1		1 1				

Кипетические закономерности реакций разложения НСООН, гидрирования СО₂ и изотопного обмена H₂+ D₂, в зависимости от предварительного воздействия на систему

405

•

Таблица 2

Изменения скоростей реакций разложения НСООН и изотопного обмена H₂ + D₂ после разной обработки катализатора (без ультравакуума)

	$\mathrm{HCOOH} = \mathrm{CO}_2 + \mathrm{H}_2$			$H_2 + D_2 + HD$			
Характер предварительной обработки	т-ра, ° С	давление НСООН ММ рт. ст.	относи- тельное изменение скорости реакции	т-ра, °С	давление НСООН мм рт. ст.	относи- тельное изменение скорости реакции	
Прогрев катализатора в ваку-	185	1,3.10-3	1,4	90	8,4.10-2	1,6	
уме 10 ⁻⁶ мм рт. ст., 40 мин.	105	4 2 40-3	n n	00	0 / 10-0	4.0	
To the p revenue 2 was	100	$1, 5 \cdot 10^{\circ}$	4,0	90	$8,4.10^{-2}$	1,6	
Objadotka H_2 (2 MM pt. ct.)	200	$2, 6 \cdot 10^{-2}$	$^{2,5}_{1,3}$	90 100	$\left \begin{array}{c} 8,4\cdot10^{-2} \\ 1,6\cdot10^{-2} \end{array}\right $	1,0 1,0	
Обработка О ₂ (2 мм рт. ст.)	185	8,6.10-2	0, 2	90	8,7.10-2	0,3	
Обработка парами H ₂ O (0,02 мм)	25 0	1,3.10-3	1,0	100	1,6.10-2	0,2	
рт. ст)., 20 мин. при 20 Обработка парами НСООН (0,003 мм рт. ст.)	2 50	1,3·10 ⁻²	0,6			_	
40 мин. при 850° То же при 20°	_			15 0	3,2.10-2	0,1	
Обработка Н ₂ (0,05 мм рт. ст.) Из системы со смазкой, 40 мин.	-	_		9 0	$6, 3 \cdot 10^{-2}$	0,2	
При 20 То же из системы без смазки				90	6 3.10-2	0.8	

ртути и смазки было исключено применением ловушек специальной конструкции, охлаждаемых жидким азотом, а также прогреваемых металлических вентилей и галлий — индий — оловянных затворов. Водород и дейтерий очищались диффузией через налладий-серебряные капилляры, прогретые и откачанные в ультравакууме, остальные вещества подвергались предварительно тщательной очистке (¹⁴), а затем в самой системе — многократной перегонке в вакууме. Воспроизводимость результатов составляла ±15%.

В табл. 1 и 2 суммированы основные результаты, усредненные из 3-4 повторяющихся серий опытов. Изменения скоростей реакций после описанного воздействия (прогрев катализатора, прогрев системы, ультравакуум и т. п.) отнесены к соответствующим величинам до такого воздействия, т. е. безразмерны. Ультравакуумная обработка продолжалась от 3 до 6 часов, изменение ее продолжительности не оказывало заметного влияния. Как видно из табл. 1 и 2, ультравакуумная обработка не влияет па кинетику реакций; кинетические уравнения и величины энергии активации, по сравнению с характеристиками, полученными после тренировки в обычном вакууме, практически не изменяются. Скорость реакций (1) и (2) при этом не увеличивается, а скорость реакции (3) возрастает в 5,6 раза. Однако близкий по величине эффект имеет место и после термической обработки в обычном вакууме (возрастание скорости реакции в 4,8 раза). Следовательно, основной вклад в увеличение скорости реакнии вносит прогрев системы, являющийся операцией, непременно сопутствующей ультравакуумной обработке. При прогреве только катализатора (т. е. без термической обработки всей системы) также наблюдается возрастание скорости реакции, но в меньшей степени.

Так как основной примесью, прочно удерживаемой стенками системы в обычном вакууме, являются пары воды, их влияние на скорость реакими изучалось в специальных опытах. Результаты. приведенные в табл. 2, показывают, что адсорбция паров воды при комнатной температуре не вызывает изменения скорости высокотемпературной реакции (1), но резко уменьшает скорость низкотемпературной реакции (3) до некоторого постоянного уровня. Такое различие, по-видимому, обусловлено влиянием температуры самой реакции. Загрязнения, находящиеся на стенках системы, десорбируясь оттуда, могут попадать на катализатор, блокируя часть его поверхности. Если температура реакции достаточна для десорбции этих примесей с катализатора, действие их на скорость реакции может не проявляться (даже в отсутствие прогрева всей системы).

Опыты с низкотемпературной адсорбцией паров муравьиной кислоты показывают ее блокирующее действие, при котором скорость реакции (3) снижается до низкого, но постоянного уровпя. При воздействии паров смазки и продуктов ее разложения (вплоть до углерода), хотя резко снижается скорость реакции (3), но кинетическое уравнение и энергия активации, несмотря на блокирование поверхности или ее части углеродом, практически не изменяются (см. табл. 1). Снижение скорости реакции происходило и при попадании паров смазки, захватываемых водородом (табл. 2).

Приведенные результаты позволяют выделить действие разных факторов и этапов, составляющих и сопровождающих ультравакуумную обработку, или проявляющихся в ее отсутствие. Из совокупности результатов следует, что в изученных условиях ультравакуумная обработка существенно не влияет на кинетические закономерности, а основной вклад в измепение скорости реакции могут вносить сопровождающие эту обработку воздействия.

Таким образом, предполагавшийся ранее прочный «адсорбционный чехол», если он существует и удаляется лишь в ультравакууме, то по крайней мере в изученных здесь случаях не обязательно должен искажать каталитические свойства металла. Следовательно, ультравакуумная обработка может и не являться необходимым этапом выяснения истинной кинетической картины катализа на металлах.

Институт органической химии им. Н. Д. Зелинского Академии наук СССР 27 IV 1971 Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Дж. А. Бекер, Сборн. Катализ. Электропные явления, ИЛ, 1958, стр. 230. ² Г. Эрлих, Сборн. Катализ. Физ.-химия гетероген. катализа, М., 1967, стр. 103. ³ А. Френне, Ж. Льенар, Сборн. основы предвидения каталитич. действия, тр. IV Международн. конгресса по катализу, «Наука», 1970, стр. 94. ⁴ Е. М. А. Willhoft, A. J. Robertson, J. Catalysis, 9, 358 (1967). ⁵ С. З. Рогинский, Кинетика и катализ, 8, 146 (1967). ⁶ Н. А. Шурмовская, Р. Х. Бурштейн, ДАН. 129, 172 (1959). ⁷ И. И. Третьяков, Ю. А. Баловнев, Сборн. Проблемы кинстики и катализа. XII. Глубокий механизм каталитич. реакций, «Наука», 1968, стр. 164. ⁸ R. P. H. Gasser, R. Thwaits, Trans. Farad. Soc., 61, 2036 (1965). ⁹ V. Ponec, Z. Knor, S. Cerny, Disc. Farad. Soc., № 44, 149 (1966). ¹⁰ D. D. Eley, P. R. Norton, Ibid., p. 135. ¹⁴ D. R. Rossington, J. Catalysis, 7, 365 (1967). ¹² G. Ertl, Zs. phys. Chem., N. F., 46, 49 (1965). ¹³ И. И. Третьяков, Б. Р. Шуб, А. В. Скляров, Кинетика и катализ, 11, 479 (1970). ¹⁴ Г. Мюллер, Г. Гиаук, Газы высокой чистоты, М., 1968.