УДК 551.465.55

ГЕОФИЗИКА

в. м. каменкович, г. м. резник

ОБ ОТРЫВЕ ПОГРАНИЧНОГО ТЕЧЕНИЯ ОТ БЕРЕГА, ОБУСЛОВЛЕННОМ ВЛИЯНИЕМ РЕЛЬЕФА ДНА (ЛИНЕЙНАЯ БАРОТРОПНАЯ МОДЕЛЬ)

(Представлено академиком Л. М. Бреховских 15 VI 1971)

1. Известно (см., например, $\binom{1-4}{}$), что при изучении ветровых течений в баротропном океане решающее значение имеет поведение изолиний функции f/H (f — параметр Кориолиса, H — глубина океана). Отрыв пограничного течения от берега можно ожидать в той точке, где значение $\frac{\partial}{\partial y} \left(\frac{f}{H}\right)$ на берегу меняет знак (ось x направлена на восток, ось y — на север). При постоянном знаке $\frac{\partial}{\partial y} \left(\frac{f}{H}\right)$ пограничное течение всюду «прижато» к берегу (если >0, то к западному, а если <0, то к восточному). В (⁵) исследован случай, когда grad (f/H) =0 на некоторой линии C, пересекающей восточный и западный берега океана. Представляет интерес изучение влияния такого рельефа дна, когда часть изолиний f/H выходит из восточного берега и, не доходя до западного берега, возвращается обратно. Но тогда на линии $C = \frac{\partial}{\partial y} \left(\frac{f}{H}\right) = 0, \quad \frac{\partial}{\partial x} \left(\frac{f}{H}\right) \neq 0.$ Имеются данные (², ⁶), что именно так и ведут себя изолинии f/H в районе отрыва Гольфстрима от берега. Поэтому рассмотрим модельную задачу

$$\varepsilon \Delta \psi - y \, \partial \psi \, / \, \partial x - \partial \psi \, / \, \partial y = -1, \tag{1}$$

$$\psi = 0 \quad \text{при } x = 0, 1,$$
 (2)

и будем искать ограниченное решение (1), (2) в полосе $0 \le x \le 1$, $|y| < \infty$. Здесь ψ — безразмерная функция тока, ε — малый параметр, характеризующий эффект трения в океане. Характеристиками предельного уравнения ($\varepsilon = 0$) будут параболы $x - \frac{1}{2}y^2 = \text{const}$ (изолинии функции f/H в нашей задаче); пограничное течение отрывается от западного берега в точке (0, 0).

2. Асимптотика решения задачи (1), (2) при малых є. В открытом океане (вне пограничных слоев) член є $\Delta \psi$ в (1) мал и геострофическое решение ψ_s представляется рядом

$$\psi_{g} = \psi_{g_{0}}(x, y) + \varepsilon \psi_{g_{1}}(x, y) + \cdots$$
(3)

Поскольку при y < 0 пограничный слой может существовать лишь у западного берега (x = 0), а при y > 0 – лишь у восточного берега (x = 1), то ясно, что $\psi_s = 0$ при x = 1, y < 0 и x = 0, y > 0. Функции $\psi_{s_0}, \psi_{s_1}, \ldots$ легко находятся. Например,

$$\psi_{g_0} = \begin{cases} y - \sqrt{y^2 - 2x} & \text{при } y > \sqrt{2x}, \\ y + \sqrt{2 - 2x + y^2} \end{cases} \quad \text{при } y < \sqrt{2x}. \end{cases}$$
(4)

Так как $\psi_s \neq 0$ при x = 0, y < 0 и x = 1, y > 0, то в областях 1 и 4 (рис. 1) формируются прибрежные пограничные слои. Далее ψ_s , очевидно, терпит разрыв вдоль линии $y = \sqrt{2x}$; этот разрыв устраняется

1061

внутренним пограничным слоем (с большими скоростями вдоль линии $y = \sqrt{2x}$) в области 3. Кроме того, в окрестности точек (0, 0) и (1, 0) асимптотические разложения в областях 1 и 4 оказываются недействительными и поэтому здесь образуются «уголковые» области 2 (область отрыва) и 5 с особой асимптотикой.

Рис. 1. Пограничные слои 1, 3, 4, «угол-ковые» области 2, 5 (см. п. 2) и схема линий тока (изолинии ψ) для задачи (1), (2) (см. п. 5) $\psi_{12} = 0$:

3. Решение задачи (1), (2) в областях 1, 2, 3 представляется в виде асимптотических рядов. В области 1

$$\psi = \psi_{10}(\zeta, y) + \varepsilon \psi_{11}(\zeta, y) + \dots,$$
 $\zeta = x/\varepsilon, \quad y < 0, \quad 0 \leqslant \zeta < \infty; \quad (5)$
в области 2

$$\begin{split} \psi &= \psi_{20}(\xi,\eta) + \varepsilon^{1/3}\psi_{21}(\xi,\eta) + \dots, \\ \xi &= x/\varepsilon^{2/3}, \quad \eta = y/\varepsilon^{1/3}, \quad \xi \ge 0, \\ -\infty < \eta < \infty; \end{split}$$

в области 3

$$\begin{split} \psi &= \psi_{30}(\sigma, y) + \varepsilon^{\gamma_4} \psi_{31}(\sigma, y) + \dots, \\ \sigma &= (x - \frac{1}{2}y^2) / \varepsilon^{\frac{1}{2}}, \\ -\infty &< \sigma < \infty, \quad y \ge 0. \end{split}$$

Обычным путем из (1), (2) получаем следующие уравнения и граничные условия:

$$L_{1}\psi_{10} = 0, \quad L_{1}\psi_{11} = -1 + \partial\psi_{10} / \partial y,$$

$$L_{1} = \partial^{2} / \partial\zeta^{2} - y\partial / \partial\zeta; \quad (8)$$

$$L_2\psi_{20} = 0, \quad L_2\psi_{21} = -1,$$

 $L_2 = \partial^2 / \partial\xi^2 - \eta \partial / \partial\xi - \partial / \partial\eta;$ (9)

$$L_{3}\psi_{30} = -1, \quad L_{3}\psi_{31} = 0,$$

$$L_{3} = (1+y^{2})\partial^{2} / \partial\sigma^{2} - \partial / \partial y \quad (10)$$

$$\psi_{10} = \psi_{11} = \psi_{20} = \psi_{21} = 0.$$
 (11)

4. Сращивание асимптотических разложений в геострофической области и областях 1, 3 проводится обычным способом (7) и приводит к условиям при $\zeta \to \infty$

$$\psi_{10} \to \psi_{g0}(0, y), \quad \psi_{11} \sim -\zeta / \sqrt{2 + y^2} + \psi_{g1}(0, y), \tag{12}$$

ири $\sigma \to \infty$

при $\sigma \rightarrow -\infty$

$$\psi_{30} \rightarrow \sqrt{2} + y, \quad \psi_{31} \rightarrow 0$$

$$\psi_{30} \rightarrow y, \quad \psi_{31} \rightarrow -\sqrt{2\sigma}.$$
 (13)

Уравнения (8) и условия (11) и (12) позволяют легко построить функции ψ₁₀, ψ₁₁.

Сращивание асимптотических разложений в геострофической области и области 2 (⁸). В промежуточной области, где справедливы асимптотики (3) и (6), введем масштабы (ε^{μ} , ε^{ν}) по осям (x, y) и запишем ψ в виде $\psi(\xi_{\mu}, \eta_{\nu})$, $\xi_{\mu} = x / \varepsilon^{\mu}$, $\eta_{\nu} = y / \varepsilon^{\nu}$, μ , $\nu > 0$. Поскольку члены $y \partial \psi / \partial x$ в $\partial \psi / \partial y$ в уравнении (1) имеют в этой области одинаковый порядок, а член: є $\Delta \psi$ меньший по сравнению с ними порядок, то находим, что μ , ν должны удовлетворять условиям

$$\mu = 2\nu, \quad 0 < \mu < 2/3, \quad 0 < \nu < 1/3.$$
 (14)

Отсюда в силу (4) получаем асимптотику в промежуточной области

$$\psi = \sqrt{2} + \varepsilon^{\nu} \eta_{\nu} + O(\varepsilon^{2\nu}). \tag{15}$$

Поскольку в этой области разложения (3) и (6) при $\varepsilon \to 0$ и $\xi_{\mu}, \eta_{\nu} \sim 1$ ($\xi = \xi_{\mu}\varepsilon^{\mu-2/3}, \eta = \eta_{\nu}\varepsilon^{\nu-1/3}$) должны быть эквивалентны, то находим, что-

$$\psi_{20} \rightarrow \overline{\gamma 2}; \quad \psi_{21} \rightarrow \eta \quad \text{при } \xi \rightarrow \infty, \quad \eta \rightarrow -\infty.$$
 (16)

Уравнения (9) и условия (11), (16) определяют функции ψ_{20} , ψ_{21} единственным образом.

Сращивание асимптотических разложений в областях 1 и 2. Так как в промежуточной области члены $\varepsilon \partial^2 \psi / \partial x^2$ и $y \partial \psi / \partial x$ в уравнении (1) являются главными, то масштабы по осям (x, y) будут $(\varepsilon^{\mu}, \varepsilon^{\nu})$, где

$$\mu + \nu = 1, \ ^{2}/_{3} < \mu < 1, \ 0 < \nu < \frac{1}{3}.$$
 (17)

Формулы для ψ_{10} , ψ_{11} и условие (17) позволяют получить асимптотику в промежуточной области ($\xi_{\mu} = x / \epsilon^{\mu}, \eta_{\nu} = y / \epsilon^{\nu} < 0$):

$$\psi = \sqrt{2} \left(1 - e^{\eta_{\nu} \xi_{\mu}} \right) + \varepsilon^{\nu} \eta_{\nu} \left(1 - e^{\eta_{\nu} \xi_{\mu}} \right) \left[1 + O(\varepsilon^{\nu}) \right] - \varepsilon^{1-3\nu} \frac{\sqrt{2}}{\eta_{\nu}} \left(\frac{1}{2} \xi_{\mu}^{2} - \frac{\xi_{\mu}}{\eta_{\nu}} \right) e^{\eta_{\nu} \xi_{\mu}} + O(\varepsilon^{1-2\nu}).$$
(18)

Эквивалентность разложений (5), (6) при $\varepsilon \to 0$ и ξ_{μ} , $\eta_{\nu} \sim 1$ легко доказать, используя асимптотическое разложение решений задач (9), (11), (16) при $\xi \to 0$, $\eta \to -\infty$ ($\xi = \xi_{\mu} \varepsilon^{\mu - 2/3}$; $\eta = \eta_{\nu} \varepsilon^{\nu - 1/3}$).

Сращивание асимптотических разложений в областях 2 и 3. В промежуточной области главными являются члены $\varepsilon \partial^2 \psi / \partial x_1^2$ и $\partial \psi / \partial y$, $x_1 = x - \frac{1}{2}y^2$. Поэтому масштабы по осям (x_1, y) суть $(\varepsilon^{\mu}, \varepsilon^{\nu})$, а «промежуточные» переменные $\sigma_{\mu} = (x - y^2/2) / \varepsilon^{\mu}$, $y_{\nu} = y / \varepsilon^{\nu}$, где

$$2\mu = 1 + \nu, \quad \frac{1}{2} < \mu < \frac{2}{3}, \quad 0 < \nu < \frac{1}{3}.$$
(19)

Введем переменные $\theta = \xi - \frac{1}{2}\eta^2$; тогда оператор L_2 запишется в виде $L_2 = \frac{\partial^2}{\partial \theta^2} - \frac{\partial}{\partial \eta}$. При помощи асимптотического разложения решений задач (9), (11), (16) при $|\theta|$, $\eta \to \infty$ ($\theta = \sigma_{\mu} \varepsilon^{\mu - \frac{2}{3}}$; $\eta = y_{\nu} \varepsilon^{\nu - \frac{1}{3}}$) находим асимптотику в промежуточной области

$$\Psi = \sqrt{2} - \sqrt{\frac{2}{\pi}} \int_{\sigma_{\mu}/(2\sqrt{y_{\nu}})}^{\infty} e^{-s^{2}} ds + \varepsilon^{\nu} y_{\nu} + O(\varepsilon^{2\nu}) - \varepsilon^{\frac{1+\nu}{4}} \sqrt{\frac{2}{\pi}} \int_{\sigma_{\mu}/(2\sqrt{y_{\nu}})}^{\infty} \sqrt{-\sigma_{\mu} + 2s\sqrt{y_{\nu}}} e^{-s^{2}} ds \{1 + O(\varepsilon^{2\nu})\}.$$
(20)

Нетрудно указать теперь такие начальные условия для уравнений (10), которые обеспечат эквивалентность асимптотических разложений (6), (7) при $\varepsilon \to 0$ и $\sigma_{\mu}, y_{\nu} \sim 1$. Имеем

$$\psi_{30}(\sigma, 0) = \begin{cases} 0, & \sigma < 0, \\ \sqrt{2}, & \sigma \ge 0; \end{cases} \quad \psi_{31}(\sigma, 0) = \begin{cases} -\sqrt{-2\sigma}, & \sigma < 0, \\ 0, & \sigma \ge 0. \end{cases}$$
(21)

·1063

Уравнения (10) при условиях (13), (21) легко решаются:

$$\begin{split} \Psi_{30} &= y + \sqrt{2} - \sqrt{\frac{2}{\pi}} \int_{\sigma/(2\sqrt{\tau})}^{\infty} e^{-s^2} ds, \\ \Psi_{31} &= -\sqrt{\frac{2}{\pi}} \int_{\sigma/(2\sqrt{\tau})}^{\infty} \sqrt{-\sigma + 2s\sqrt{\tau}} e^{-s^2} ds, \end{split} \qquad \tau &= y + \frac{1}{3}y^3. \tag{22}$$

5. Итак, асимптотические разложения в областях 1, 2, 3 построены. Определение асимптотик в областях 4 и 5, по существу, не отличается от определения асимптотик в областях 1 и 2 (в области 5 разложение начинается с членов порядка $\varepsilon^{1/3}$).

Используя решения задач (8) — (13), (16), (21) и формулы (15). (18), (20), а также соответствующие соотношения для областей 4, 5 (переписав их все в переменных x, y), нетрудно, следуя (⁷), построить равномерно-пригодное в области $0 \le x \le 1$, $|y| < \infty$ разложение решения уравнения (1), удовлетворяющее условию (2).

Скорости течения (производные от ψ по x, y), вычисленные по асимптотическому разложению функции ψ , будут непрерывны. Хотя, как это следует из (4), (22), производные от ψ_s , ψ_{s0} , ψ_{s1} имеют особенности при $x \rightarrow 0$, $y \rightarrow 0$, а $\partial \psi_g / \partial x$ и при $x \rightarrow 1$, $y \rightarrow 0$, но эти особенности устраняются «уголковыми» областями 2 и 5.

Найденное асимптотическое разложение решения задачи (1), (2) позволяет легко построить схему линий тока (изолинии ψ), см. рис. 1

Заметим, что, хотя $\frac{\partial}{\partial y} \left(\frac{f}{H} \right)$ меняет знак в обеих точках (0, 0) и (1, 0) отрыв пограничного течения 1 от берега и его продолжение в виде внутренней струи 3 наблюдается лишь в точке (0, 0); при подходе к точке (1, 0) пограничное течение 4 просто постепенно рассасывается.

6. Указанный метод решения задачи (1), (2) нетрудно обобщить на случай произвольной правой части в (1), а также «кривых» береговых линий.

Отметим, что осью внутреннего пограничного течения в задаче (1) (2) является линия $y = \sqrt{2x}$. В общем случае этой осью будет изолиния f/H, касающаяся западного берега в некоторой точке (точка отрыва) и возвращающаяся к восточному берегу. Поскольку такая изолиния f/Hбудет непременно колебаться, то мы получаем простую модель, объясняющую влиянием рельефа дна стационарные меандры Гольфстрима после его отрыва от берега (см. нелинейные модели меандрирования в (⁹, ¹⁰) и библиографию к ним).

Институт океанологии им. П. П. Ширшова Поступило Академии наук СССР 15 VI 1971 Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. М. Каменкович, Тр. Инст. океанол. АН СССР, 56, 241 (1962). ² Р. We lander, Tellus, 20, № 1, 1 (1968). ³ W. R. Holland, Tellus, 19, № 4, 582 (1967) ⁴ В. П. Кочергин, В. И. Климок, Изв. АН СССР, сер. Физика атмосферы и океа на, 7, № 8, 885 (1971). ⁵ В. М. Каменкович, В. А. Митрофанов, ДАН, 199 № 1, 78 (1971). ⁶ А. Е. Gill, R. L. Parker, Deep Sea Res., 17, № 4, 823 (1970) ⁷ J. D. Cole, Perturbation Methods in Applied Mathematics, 1968. ⁸ J. Mauss, J Mecanique, 9, № 4, 523 (1970). ⁹ А. R. Robinson, P. P. Niiler, Tellus, 19, № 2 269 (1966). ¹⁰ В. Ф. Козлов, Изв. АН СССР, сер. Физика атмосферы и океана, 6 № 9, 923 (1970).