УДК 513.838

MATEMATUKA

О. В. МАНТУРОВ

К ТЕОРИИ ВЕКТОРНЫХ РАССЛОЕНИЙ НАД КОМПАКТНЫМИ ОДНОРОДНЫМИ ПРОСТРАНСТВАМИ

(Представлено академиком И. Г. Петровским 8 VII 1971)

1. Целью работы является исследование однородных пространств G/H компактных групп Ли методами K-теории, теории представлений, спектральных последовательностей когомологий.

Мы рассматриваем две простые конструкции A и B в терминах теории представлений, позволяющие получать элементы из $K^*(G/H)$ в виде геометрических векторных расслоений над G/H ($K^0(G/H)$) и надстройкой SG/H ($K^1(G/H)$). (Речь пойдет, в основном, о комплексном K-функторе.) Вместе с этими построениями можно получить характеры Черна конструируемых пучков, как это сделано в (°).

Основным результатом является теорема, устанавливающая, что для пространств G/H из некоторого класса в кольце $K^*(G/H)\otimes Q$ (Q — рациональные числа) имеется система образующих, полученных с помощью конструкций A и B.

2. Описание конструкций A и B. Конструкция A. Пусть X = G/H. Рассмотрим в кольце представлений R(G) группы G некоторый элемент Θ , обладающий свойством, что ограничение его на подгруппу H дает нулевой элемент в кольце представлений R(H). Определим

$$f(\Theta): G/H \to U(n),$$
 (1)

полагая

$$f(\Theta)gH = \Phi(g)\Psi^{-1}(g), \tag{2}$$

где $\Theta = \Phi - \Psi$: Φ , Ψ — геометрические (невиртуальные) представления размерности n, $\Psi^{-1}(g)$ означает матрицу, обратную к $\Psi(g)$. Отображение $f(\Theta)$ определено коррсктно и, по общей схеме, определяет элемент из $K^1(G/H)$ (3). Обозначим полученное нульмерное векторное виртуальное расслоение над SG/H через $\gamma(f(\Theta))$.

Конструкция B. Пусть X=G/H. Рассмотрим некоторое представление Φ размерности N группы G, обладающее свойством, что ограничение этого представления на подгруппу H является приводимым представлением группы H. Пусть l— инвариантное пространство (размерности n) представления $\Phi(H)$.

Определим отображение

$$f(\Phi, l): G/H \to G_{N, n}, \tag{3}$$

положив

$$f(\Phi, l)gH = \Phi(g)l. \tag{4}$$

Отображение (3) определено корректно. Обозначим элемент из $K^{0}(X)$ заданный этим отображением, через $\delta(\Phi, l)$.

3. Однородные пространства нормального положения и нормального типа. Пусть G/H — однородное пространство с компактной связной G ранга R и связной замкнутой H ранга $r;\ J_{S(G)},\ J_{S(H)}$ означают алгебры полиномов, инвариантных относительно группы Вейля на картановских подалгебрах групп G и H. Пусть ρ^* — отображе-

ние $J_{S(G)} o J_{S(H)}$, соответствующее вложению $\phi\colon H o G$ (5). Если в $J_{S(G)}$ существуют R производящих алгебраически независимых полиномов P_1, P_2, \ldots, P_R таких, что $\rho^*(P_{r+1}), \rho^*(P_{r+2}), \ldots, \rho^*(P_R)$ принадлежит идеалу в $J_{S(H)}$, порожденному $\rho^*(P_1), \rho^*(P_2), \ldots, \rho^*(P_r)$, то G/H называется однородным пространством нормального положения $\binom{1}{r}, \binom{2}{r}, \binom{4}{r}$; если $\rho^*P_i, i=r+1,r+2,\ldots,R$, суть полиномы от $\rho^*P_j, j=1,2,\ldots,r$, то G/H называется пространством нормального типа.

4. В этом пункте излагается первая часть основного результата.

T е о р е м а $\ 1.$ Пусть G/H- пространство нормального типа, RkH=r,RkG=R.

Тогда существует R-r нульмерных представлений Θ_i , $i=1,2,\ldots,R-r$, групп G_i , накрывающих G таких, что для некоторых натуральных m_i корректно определены отображения

$$f^{m_i}(\Theta) \colon G \to U, \quad f^{m_i}(\Theta) \, \tilde{g} = \underbrace{f(\Theta) \, \tilde{g} \cdot f(\Theta) \, \tilde{g} \dots f(\Theta) \, \tilde{g}}_{m_i \ pas}, \quad \tilde{g} \in \tilde{G}_i.$$
 (5)

и у $[f^m_i(\Theta_i)]$, i = 1, 2, ..., R - r, составляет ту часть системы образующих $K^*(G/H) \otimes Q$, которая принадлежит $K^1(G/H) \otimes Q$.

5. В этом пункте излагается вторая часть основного результата — построения образующих элементов кольца $K^*(G/H) \otimes Q$, принадлежащих $K^0(G/H)$, с помощью конструкции B.

Пусть Φ — представление компактной связной группы G, Φ_i , $i=1,2,\ldots,s$,— полный набор его неприводимых нетривиальных компонент, dim $\Phi_i=n_i$. Обозначим через $V(\Phi(G))$ линейную группу

 $\sum_{i=1}^{n} U(n_i)$. Для всякой компактной связной G существует локально точное представление Ψ такое, что группа $\Psi(G)$ за вычетом всех одномер-

ное представление Ψ такое, что группа $\Psi(G)$ за вычетом всех одномерных тривиальных представлений, содержащихся в ней, вполне негомологична нулю в $V(\Psi(G)) = U(n_1) + \ldots + U(n_s)$.

Пусть H — замкнутая связная подгруппа G и $h = h_1 + h_2 + ...$... $+ h_1 + h_{l+1}$ — разложение алгебры Ли h группы H в сумму простых некоммутативных алгебр h_1, h_2, \ldots, h_l и коммутативной h_{l+1} . Имеет место

Теорема 2. При некотором наборе натуральных чисел (p_s, \ldots, p_s) представление $\Psi^{p_1} + \ldots + \Psi^{p_s}$ группы H содержит локально точное представление группы H

$$\Gamma = \Gamma_1 + \Gamma_2 + \ldots + \Gamma_t + \Gamma_{t+1}$$

такое, что

1) линейная группа $\Gamma_i(H/\operatorname{Ker}\Gamma_i(H))$ вполне негомологична нулю в $V(\Gamma_i(H/\operatorname{Ker}\Gamma_i(H)));$

2) соответствующее представление Γ_i алгебры h обладает свойством: $\Gamma_i(h_i), i, j = 1, 2, \ldots, l$, нетривиально тогда и только тогда, когда i = j;

3) $\Gamma_{l+1}(H)$ — коммутативная линейная группа (возможно, тривиальная; в этом случае полагаем $\Gamma = \Gamma_1 + \ldots + \Gamma_l$).

Обозначим
$$V^{(p_1 \dots p_s)} = \sum_{i=1}^s V^{(p_i)}, \ V^{(p)} = \sum_{q_1 + \dots + q_p} \frac{p!}{\prod_{q_i}!} U\left(\prod_i n_i^{q_i}\right), \ q_i \geqslant 0.$$

Используя утверждения теоремы, рассмотрим расслоения

$$G/H \approx \frac{\Psi^{p_1} + \dots + \Psi^{p_s}(G)}{\Psi^{p_1} + \dots + \Psi^{p_s}(H)} \xrightarrow{i_1} \frac{V^{(p_1 + \dots + p_s)}}{\Gamma_1 + \dots + \Gamma_l + \Sigma} \xrightarrow{p_1} \frac{V^{(p_1 \dots p_s)}}{\Psi^{p_1} + \dots + \Psi^{p_s}(G)} = B_1, \tag{6}$$

$$F_{2} = \xrightarrow{V_{1} + \ldots + V_{l} + V_{\infty}} \xrightarrow{i_{2}} \xrightarrow{V(p_{1} \ldots p_{8})} \xrightarrow{p_{2}} \xrightarrow{V_{1}(p_{1} \ldots p_{8})} \xrightarrow{V_{1}(p_{1} \ldots p_{8})} = B_{2}.$$
 (7)

	$\Psi(G)$	$\Psi(H)$
АІ (п четное)	$\mathrm{SU}(n)$	SO(n)
АІ (п нечетное)	$\mathrm{SU}(n)$	SO(n)
AII	SU(2n)	$\operatorname{Sp}(n)$
$oldsymbol{A}$ III	U(n)	U(k) + U(n-k)
$BDI \begin{pmatrix} n & \mathtt{Четноe} \\ k & \mathtt{HeЧетноe} \end{pmatrix}$	$SO^{n/2}(n)$	$[SO(k) + SO(n-k)]^{n/2}$
$BDI \begin{pmatrix} n \text{ qerthoe} \\ k \text{ qerthoe} \end{pmatrix}$	$SO^{n/2}(n)$	$[SO(k) + SO(n-k)]^{n/2}$
BDI (n нечетное)	SO(n)	SO(k) + SO(n-k)
DIII	$SO^n(2n)$	$[P_1SU(n)\otimes \varphi_1+P_{n-1}SU(n)\otimes \varphi_2]^n$
CI	$\mathrm{Sp}(n)$	$P_1\mathrm{SU}(n)\otimes \varphi_1+P_n=1\mathrm{SU}(n)\otimes \varphi_2$
CII	Sp(n)	$\mathrm{Sp}(k) + \mathrm{Sp}(n-k)$
EI	$P_1(E_6)$	$P_{z}(C_{4})$
EII	$P_{\mathfrak{g}}(E_{\mathfrak{g}})$	$Ad(A_1 + A_6) + P_3(A_6) \otimes P_1(A_1)$
EIII	$P_{\scriptscriptstyle 6}(E_{\scriptscriptstyle 6})$	$\operatorname{Ad}(D_{5})\otimes\varphi_{1}+P_{4}(D_{5})\otimes\varphi_{2}+P_{5}(D_{5})\otimes\varphi_{3}+\varphi_{4}$
EIV	$P_{\mathfrak{s}}(E_{\mathfrak{v}})$	$P_{1}(F_{4})$
EV	$P_7(E_7)$	$\mathbf{A}^{\mathrm{d}}\left(A_{7}\right)+P_{4}\left(A_{7}\right)$
EVI	$P_{7}(E_{7})$	$\operatorname{Ad}\left(D_{\mathfrak{e}}+A_{\mathfrak{1}}\right)+P_{\mathfrak{b}}\left(D_{\mathfrak{b}}\right)\otimes P_{\mathfrak{1}}(A_{\mathfrak{1}})$
EVII	$P_7(E_7)$	$\operatorname{Ad}(E_6)\otimes \varphi_1 + P_1(E_6)\otimes \varphi_2 + P_5(E_6)\otimes \varphi_3 + \varphi_4$
EVIII	$P_1(E_8)$	$\operatorname{Ad}(D_8) + P_8(D_8)$
EIX	$P_1(E_8)$	Ad $(E_7 + A_1) + P_6 (E_7 \otimes P_1 (A_1))$
FI	$P_4(F_4)$	$Ad(C_3 + A_1) + P_3(C_3) \otimes P_1(A_1)$
FII	$P_4(F_4)$	$\operatorname{Ad}(B_4) + P_4(B_1)$

Таблица 1

Здесь Σ — представление группы H, дополняющее Γ до $\Psi^p(H)$, $V^{(p_1 \dots p_s)} = U(N_1) + \dots + U(N_m)$, $V_{\infty} = U_{\infty}^{\ 1} + \dots + U_{\infty}^{\ m}$ и $U_{\infty}^{\ i}$ унитарная группа порядка $M_i = N_i - \dim U(N_i) \cap V(\Gamma)$; знак $\stackrel{\cdot \cdot \cdot}{pprox}$ в (6) указывает докальную эквивалентность (накрытие). Заметим, что:

1) Пространство B_2 изоморфно прямому произведению $W_1 \times W_2 \times \dots$

 W_m , где $W_i = U(N_i) / (U(N_i) \cap V(\Gamma)) + U_{\infty}^i$. Обозначим проекцию B_2 на W_i через ω_i .

2) Пространство W_i ,

$$W_{i} = U(N_{i})/U(m_{1}^{i}) + U(m_{2}^{i}) + \ldots + U(m_{l_{i}}^{i}) + U(M_{i}),$$
 (8)

расслаивается над пространством Грассмана l_i различными способами:

$$\pi_r \colon \frac{U\left(N_i\right)}{U\left(m_1^i\right) + \ldots + U\left(m_{l_i}^i\right) + U\left(M_i\right)} \to \frac{U\left(N_i\right)}{U\left(m_r^i\right) + U\left(N_i - m_r^i\right)} \ .$$

3) Расслоения (6), (7) определяют отображения
$$\omega_i p_2 i_1 \pi\colon G/H \to W_i; \quad \zeta = \pi_r \omega_i p_2 i_1 \pi\colon G/H \to G_{N_1, m_r}i.$$
 (9)

Последнее отображение задает элемент из $K^{0}(G/H)$ — именно тот, который в терминах конструкции B обозначается через $\delta(\Phi, l)$, где lпространство представления одной из не-

приводимых компонент представления $\Gamma_i, i = 1, 2, \dots, l+1.$

Tеорема 3. $\Pi y c \tau b$ σ_k означает 2kмерную образующую алгебры $H^*(G_{N,s}, Z)$ (k-й класс Черна универсального пучка), $k = 1, 2, \ldots, s$. Если G/H — пространство нормального положения, то элементы вида $\zeta^*\sigma_h$ порождают характеристическую $no\partial a$ лгебру расслоения $G \rightarrow G / H$.

Рис. 1

Из теоремы 3 вытекает

Tеорема 4. Eсли G/H — nространство нормального положения, то среди эле-

ментов вида $\xi^*\Lambda_{\mathbb{A}}\xi$ можно выбрать ту часть системы образующих кольца $K^*(G/H)\otimes Q$, которая принадлежит $K^{\circ}(G/H)$. Здесь ξ — универсальный пучок над пространством Γ рассмана, $\Lambda_k - k$ -я внешняя степень.

Пучки вида $\zeta^*\Lambda_k\xi$ легко могут быть построены с помощью конструкции B, так что вопрос об описании четномерных образующих кольца $K^*(G/H)\otimes Q$ с помощью конструкции B решен положительно для пространств G/H нормального положения.

В заключение приводим табл. 1 симметрических пространств, за исключением групповых, с указанием набора виртуальных представлений Θ , задающих нечетномерные образующие $K^*(G/H)\otimes Q$, а также наборов р, Г, порождающих отображение ζ, при посредстве которого, в терминах конструкции B, получаются образующие $K^*(G/H)\otimes Q$, принадлежащие $K^{\circ}(G/H)$. P_{k} означает представление простой группы с числовой отметкой, по k-му простому корню равной единице, а по остальным — нулю. Нумерация корней задается схемой (рис. 1), $M_i(A_k)$ означает представление группы A_k в пространстве симметрических тензоров валентности i, Ad(G) — присоединенное представление $G; \varphi_1, \varphi_2, \varphi_3, \varphi_4$ — некоторые одномерные представления группы U(1).

Московский кооперативный институт

Поступило 30 VĬ 1971

цитированная литература

1 Доан Купнь, Тр. семинара по векторн. и тензорн. анализу, 14, 1968.

2 П. К. Рашевский, УМН, 23, № 3 (1969). 3 М. Атья, Лекции по К-теории, М., 1967. 4 А. Т. Фоменко, Тр. семинара по векторн. и тензорн. анализу, 15 (1970).

5 А. Борель, Сборн. Расслоенные пространства, ИЛ, 1958. 6 О. В. Мантуров, ДАН, 201, № 2 (1971). цитированная литература