УЛК 542.952/.954

ХИМИЯ

О. Б. СЕМЕНОВ, С. Г. ДУРГАРЬЯН, В. Г. ФИЛИППОВА, член-корреспондент АН СССР Н. С. НАМЕТКИН

ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ СТАТИСТИЧЕСКИХ СОПОЛИМЕРОВ ВИНИЛТРИМЕТИЛСИЛАНА И СТИРОЛА

Ранее (¹) было показано, что винилтриметилсилан (BTMC) образует статистические сополимеры со стиролом под действием аниопных инициаторов, например n-C₄H₉Li, и что константы отпосительной активности BTMC (r_1) и стирола (r_2) при этом составляют 0.06 ± 0.01 и 5.7 ± 0.3 соответственно. Изучение же зависимости молярного состава этих сополимеров от конверсии показало, что они сильно обогащены стиролом. С целью исследования молекулярной структуры сополимеров BTMC со стиролом был синтезирован ряд образцов высокомолекулярных сополимеров по известной методике (¹). В табл. 1 приведены условия получения рассматриваемых образцов сополимеров. Изучение молекулярной структуры сополимера BTMC со стиролом проводилось как прямым методом (я.м.р.), так и расчетным путем с использованием относительных констант сополимеризании.

Известно, что с помощью метода я.м.р. относительно точно оценивается распределение по длинам последовательностей звеньев стирола в его

сополимерах (2-6). Указанный прием был применен нами при изучении сополимеров ВТМС со стиролом. Спектры я.м.р. 9 образцов сополимеров, приведенных в табл. 1, были получены на я.м.р. спектрометре «Varian» ДР-60 (стандарт гексаметилдисилоксан; 15% раствор в ССІ₄). В качестве примеров на рис. 1 приведены спектры я.м.р. образцов №№ 3 и 7. Для расчета доли «статистических» звеньев стирола в сополимерах по спектрам я.м.р. была использована формула (5):

$$\varphi_{2\text{ctar}} = (2F_{\text{06m}} - 5F_{\text{i}})/2F_{\text{06m}}, \quad (1)$$

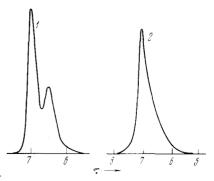


Рис. 1. Спектры я.м.р. образцов № 3 (1) и № 7 (2) сополимера ВТМС со , стиролом

где $\phi_{2\text{стат}}$ — доля статистических последовательностей звеньев стирола ($n_c \leqslant 5$); $F_{\text{общ}}$ — общая площадь обоих ников, соответствующих ароматическим o-, m- и n-протонам; F_{1} — площадь ника при $\tau = 6.5$, соответствующая o-протонам «блочных» ($n_c > 5$) последовательностей звеньев стирола (площадь ника при $\tau = 7.0$ соответствует m- и n-протонам). В табл. 2 приведены значения $\phi_{\text{2стат}}$, определенные из спектров.

Представлялось интересным сравнить полученные величины ф_{2стат} с теоретически рассчитанной долей как изолированных звеньев стирола, так и суммарной долей звеньев стирола, находящихся в последовательностях от 1 до 5. При расчете распределения по длинам последовательностей для сополимеров ВТМС со стиролом, полученных на разных степенях превращения, необходимо принимать во внимание, что мономерная смесь в ходе полимеризации сильно обогащается менее активным мономером — ВТМС (¹). Расчет распределения по длинам последователь-

ностей по обычным формулам (7 , 8) без учета последнего замечания, должен привести к значительным отклонениям от истинного распределения звеньев в макромолекулах сополимера. Для подобного расчета нами применялся следующий метод. Вся рассматриваемая область превращений от 0 до p_i разбивалась на ряд равных областей $p_0 - p_1$, $p_4 - p_2$, ..., p_{i-1}

Таблица 1 Условия и результаты опытов по сополимеризации винилтриметилсилана со стиролом

№ № п.п.	Количество ВТМС в ис- ходной смеси, м. д.	Концентрация н-С ₄ Н ₉ Li, мол/л·10 ³	Время по- лимериза- ции, час	Выход со- полимера, %	Количество ВТМС в сополи-мере, м.д.
1 2 3 4 5 6 7 8 9	0,583 0,583 0,583 0,583 0,629 0,750 0,904 0,904 0,904	8,0 8,0 8,0 1,5 4,5 8,0 8,0	1,0 2,0 10,0 16,0 160,0 26,0 0,5 1,2 1200,0	32,1 55,2 76,6 89,7 45,2 70,5 3,5 19,3 82,6	0,180 0,243 0,407 0,555 0,266 0,677 0,563 0,653 0,880

Примечание. Суммарная концентрация мономеров 2,4 мол/л; растворитель — циклогексан, температура — 25° С.

— p_{j} , считая, что в пределах каждой области состав мономерной смеси и образующегося полимера остается постоянным и равным $[a_{cp}]_1$, $[a_{cp}]_2$,, $[a_{cp}]_j$ и α_{cp_1} , α_{cp_2} ,..., α_{cp_j} , соответственно. Для определения величин $[a_{cp}]$ и α_{cp} использовалось уравнение, выведенное Скейстом (9):

$$\ln(1 - p_j) = \int_{a_0}^{[a]_j} \frac{d[a]}{\alpha - [a]}.$$
 (2)

Значения $\alpha_{\rm cp}$ і и $[a_{\rm cp}]$ і, соответствующие изменению конверсии p_{i-1} — p_i ($i=1,\ 2,\ ...,\ j$), использовались затем для расчетов распределения по длинам последовательностей средневесовой (l_w) и среднечисловой (l_n) длин последовательностей, состоящих из однородных звеньев и неоднородности относительно длин последовательностей (U). Результирующие распределения по длинам последовательностей l_w , l_n и U для макромолекул, образовавшихся к степени превращения p_i , будут представлять собой сумму таких «микрораспределений». Эти величины рассчитывались по формулам (в предположении концевой модели роста):

$$\varphi_{1}(n)_{p_{j}} = \sum_{1}^{j} \alpha_{\text{cp } i} \varphi_{1}(n)_{p_{i-1}-p_{i}} / \sum_{1}^{j} \alpha_{\text{cp } i}, \qquad (4)$$

где $\varphi_i(n)_{p_j}$ — доля всех звеньев мономера M_i в блоках, состоящих из n звеньев,

$$\varphi_{1}(n)_{p_{i-1}-p_{i}} = n \left(P_{11} \right)_{p_{i-1}-p_{i}}^{n-1} \left(P_{12} \right)_{p_{i-1}-p_{i}}^{2}; \tag{5}$$

$$(P_{11})_{p_{i-1}-p_i} = \frac{r_1 F_{p_{i-1}-p_i}}{r_1 F_{p_{i-1}-p_i} + 1}; \quad (P_{12})_{p_{i-1}-p_i} = \frac{1}{r_1 F_{p_{i-1}-p_i} + 1}; \quad (5a)$$

$$F_{p_{i-1}-p_i} = \frac{[a_{cp}]_{p_{i-1}-p_i}}{1 - [a_{cp}]_{p_{i-1}-p_i}};$$
 (56)

Для среднечисловой и средневесовой длин последовательностей, состоящих из мономерных звеньев M_1 , получим соответственно

$$(l_{n_i})_{p_j} = \sum_{1}^{j} \alpha_{\text{cp } i} (l_{n_i})_{p_{i-1}-p_i} / \sum_{1}^{j} \alpha_{\text{cpi}},$$
 (6)

$$(l_{w_i})_{p_j} = \sum_{1}^{j} \alpha_{\text{cp } i} (l_{w_i})_{p_{i-1}-p_i} / \sum_{1}^{j} \alpha_{\text{cp } i}, \tag{7}$$

где

$$(l_{n_i})_{p_{i-1}-p_i} = \frac{1}{1-(P_{11})_{p_{i-1}-p_i}};$$
 (6a)

$$(l_{w_i})_{p_{i-1}-p_i} = \frac{1 + (P_{11})_{p_{i-1}-p_i}}{1 - (P_{11})_{p_{i-1}-p_i}}.$$
 (7a)

Неоднородность относительно длин носледовательностей, состоящих из ввеньев $M_{\rm t}$, получается аналогично

$$(U_1)_{p_j} = \sum_{1}^{j} \alpha_{\text{cp} i} (U_1)_{p_{i-1}-p_i} / \sum_{1}^{j} \alpha_{\text{cp} i},$$
 (8)

где

$$(U_1)_{p_{i-1}-p_i} = (P_{11})_{p_{i-1}-p_i}. (8a)$$

При аналогичных расчетах относительно мономера M_2 , в уравнениях (4) — (8) индекс 1 заменяется на индекс 2. Вычисленные значения распределений по длинам последовательностей l_n , l_w и U для стирола (M_2) в его сополимере с винилтриметилсиланом приведены в табл. 2.

Таблица 2 Молекулярная структура сополимеров ВТМС со стиролом

. М образца	${{\phi }_{2}}\left(n\right) _{pj}$							Рассчитано по константам сополи- меризации		Определе но из я.м.р.	
	1	2	3	4	5	$(l_{n_2})_{p_j}$	$(^lw_2)_{p_{\hat{j}}}$	$\left egin{array}{c} \left(U_2 ight)_{m{p_j}} \end{array} ight $	Φ_2 (1) p_j	$\begin{bmatrix} 5 & \varphi_2\left(n ight)_{p_j} \ 1 & \end{bmatrix}$	Ф2 стат
1 2 3 4 5 6 7 8 9	$0,425 \\ 0,545$	0,104 0,146 0,151 0,151 0,157 0,157 0,296 0,274 0,240	0,132 0,126 0,126 0,144 0,107 0,155 0,112		0,092 0,085 0,085 0,097 0,048 0,031 0,016	3,40 3,00 2,86 2,86 3,06 1,41 1,54 1,37 1,31	5,91 4,99 4,66 4,66 5,05 1.86 2,07 1,74 1.61	0,74 0,66 0,63 0,63 0,65 0,32 0,35 0,27 0,22	0,072 0,129 0,171 0,171 0,133 0,225 0,425 0,545 0,612	0,496 0,609 0,638 0,638 0,652 0,608 0,978 0,990 0,992	0,072 0,149 0,184 0,182 0,173 0,234 0,432 0,468 0,588

При сравнении рассчитанных данных с результатами, полученными из я.м.р., можно видеть, что рассчитанная мольная доля изолированных звеньев стирола близка к значениям фестат, в то время как сумма мольных долей звеньев стирола, находящихся в блоках от 1 до 5 звеньев, значительно отличается от них. Полученные данные позволяют сделать вывод, что при помощи метода я.м.р. можно определить относительно точно долю стирола, находящегося в изолированных звеньях, в его сополимере с винилтриметилсиланом. Кроме того, эти результаты подтверждают ранее полученные экспериментальные данные (1), свидетельствующие с том, что при сополимеризации в широкой области концентраций исходной

мономерной смеси и вплоть до высоких степеней превращения сополимер винилтриметилсилана со стиролом обогащен стиролом и звенья стирола находятся в сополимере в длинных последовательностях.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва Поступило 22 XI 1971

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Г. Филиппова, Н. С. Наметкин, С. Г. Дургарян, Изв. АН СССР, ОХН, 1966, 4727. ² F. А. Bovey, G. U. Tiers, G. R. Filipovich, J. Polymer Sci., 38, 73 (1959). ³ H. Hendus, K. H. Illers, E. Ropte, Koll. Zs. u. Zs. Polymer, 216/217, 140 (1967). ⁴ V. D. Mochel, Rubber Chem. Technol., 40, 1200 (1967). ⁵ J. Vorhldieck, J. Soft et al., Plaste und Kautshuk, № 9, 634 (1970). ⁶ V. D. Mochel, Macromolecules, 2, № 5, 537 (1969). ⁷ T. Alfrey, G. Goldfinger, J. Chem. Phys., 12, 205 (1944). ⁸ F. T. Wall, J. Am. Chem. Soc., 66, 2050 (1944). ⁹ J. Skeist, J. Am. Chem. Soc., 68, 1781 (1946).