УДК 541.183.+537.581.

ФИЗИЧЕСКАЯ ХИМИЯ

Л. А. РУДНИЦКИЙ

К ВОПРОСУ О ВЗАИМНОЙ ДЕПОЛЯРИЗАЦИИ ДИПОЛЕЙ НА ПОВЕРХНОСТИ МЕТАЛЛА

(Представлено академиком И. В. Петряновым-Соколовым 19 IV 1971)

Рассмотрим взаимодействие нормальных к поверхности металла диполей, возникших в результате переноса заряда при образовании адсорбционной связи. Степень переноса заряда при образовании адсорбционной связи η равна C_{n²} — квадрату коэффициента уравнения

$$\psi = C_{\mu}\psi_{\mu} + C_{\kappa}\psi_{\kappa}, \qquad (1)$$

представляющего адсорбционную связь (¹, ²) как суперпозицию ионной (волновая функция ψ_{π}) и ковалентной (волновая функция ψ_{π}) структур ($C_{\pi}^2 + C_{\kappa}^2 = 1$).

Энергию системы E, коэффициенты $C_{\mathfrak{n}}$ п $C_{\mathfrak{n}}$ находят, решая систему уравнений

$$(H_{\kappa} - E)C_{\kappa} + (H_{\kappa \pi} - ES)C_{\pi} = 0,$$

$$(H_{\kappa \pi} - ES)C_{\kappa} + (H_{\pi} - E)C_{\pi} = 0.$$
(2)

Все величины в уравнении (2) (гамильтонпаны H_{κ} , $H_{\kappa n}$ и H_{n} и энергию E) отнесем к адсорбционной связи на незаполненной (чистой) поверхности металла. Примем интеграл перекрывания S равным нулю.

$$E^{2} - E(H_{\rm H} + H_{\rm K}) - H_{\rm KH}^{2} = 0; \qquad (2a)$$

$$E = \frac{1}{2} (H_{\kappa} + H_{\pi}) \pm \frac{1}{2} \sqrt{(H_{\kappa} - H_{\pi})^{2} + 4H_{\kappa\pi}}.$$
 (3)

Рассмотрим случай $H_{\kappa} > H_{\mu}$ (значительная степень переноса заряда).. Приближенно

$$C_{\mu}^{2} = \eta_{0} = \frac{1}{1 + H_{KW}^{2}/(H_{K} - H_{\mu})^{2}} \approx 1 - \frac{H_{KW}}{(H_{K} - H_{\mu})^{2}}.$$
 (4)

В предположении, что $H_{\kappa n}$ не зависит от покрытия,

$$\eta_{0} - \eta_{\theta} = \Delta \eta = 2H_{\text{KM}}^{2} \frac{\Delta H}{(H_{\text{K}} - H_{\text{H}})^{3}} = 2\Delta H \frac{1 - \eta_{0}}{(H_{\text{K}} - H_{\text{H}})^{2}}.$$
 (5)

Здесь η_{θ} — степень переноса заряда при покрытии θ , η_{θ} — степень переноса заряда при $\theta \rightarrow 0$; $\Delta H = \Delta H_{\pi} - \Delta H_{\kappa}$, где $\Delta H_{\pi} = (H_{\pi})_{\theta} - H_{\pi}$ и $\Delta H_{\kappa} = (H_{\kappa})_{\theta} - H_{\kappa}$, $(H_{\kappa})_{\theta}$ и $(H_{\pi})_{\theta} -$ гамильтонианы, отвечающие покрытию θ .

В качестве параметра, определяющего изменение гамильтонианов с покрытием θ , примем напряженность электрического поля диполей μ_{θ} , образованных адсорбированными частицами и их зеркальными изображениями. Считаем, что изменение напряженности этого поля с ростом θ определяет соответствующие изменения уровня потенциала заряда адсорбированной частицы и заряда, переданного при адсорбции твердому телу. Правомерность такого рассмотрения определяется правомерностью использования метода зеркального изображения при атомно малых расстояниях заряженной частицы от поверхности металла. Эксперименты в сильных полях показали, что при расстояниях ~ 5 Å от поверхности металла потенциальная энергия заряженной частицы описывается уравнением работы сил зеркального изображения. Для меньших расстояний данные отсутствуют. Однакс Бардиным показано (³), что метод зеркального изображения пригоден для расчета потенциальной энергии электрона, находящегося на атомно малых расстояниях от поверхности металла.

Использование метода зсркального изображения предполагает следующее определение дипольного момента μ_{θ} : $\mu_{\theta} = \Delta \varphi^{-} / (4\pi \theta N_m \tilde{e})$, где $\Delta \varphi^{-}$ изменение работы выхода электрона при адсорбции, N_m — число адсорбированных частиц, соответствующее $\theta = 1$, \bar{e} — заряд электрона. Покидающий металл-электрон проходит половину разности потенциалов, отвечающей суммарному моменту $\mu_{\theta}\theta N_m - 2\pi\mu_{\theta}N_m$, зеркальное изображение проходит вторую половину разности потенциалов. Суммарный эффект (измеряемый экспериментально) эквивалентен прохождению электроном полной разности потенциалов в $4\pi\mu_{\theta}\theta N_m$.

Внесем в электрическое поле напряженностью F_{θ} ионную структуру (диполь μ_{u}) и ковалентную структуру. Примем коэффициенты поляризуемости структур равными и, поскольку нас интересует разность $\Delta H = \Delta H_{u} - \Delta H_{\kappa}$, исключим члены, связанные с энергией поляризации $\frac{1}{2}F_{\theta}^{2}\alpha_{u}$ (α_{u} — коэффициент поляризуемости частицы на поверхности металла). С учетом этого

$$\Delta H = \Delta H_{\mu} = \frac{1}{2} \left(F_{\theta} \mu_{\mu} - \frac{2F_{\theta} \alpha_{\mu} \mu_{\mu}}{a^3} \right) = \frac{1}{2} F_{\theta} \mu_{\mu} \left(1 - \frac{2\alpha_{\mu}}{a^3} \right). \tag{6}$$

Здесь $F_{\theta}\mu_{\mu}$ — энергия ионной структуры в поле F_{θ} , $2\alpha_{\mu}F_{\theta}\mu_{\mu}/a^{3}$ — энергия взаимодействия наведенного полем диполя $\alpha_{u}F_{\theta}$ и его изображения с зарядом иона и его зеркальным изображением. Коэффициент 1/2 учитывает тот факт, что энергия взаимодействия всегда относится к паре диполей.

Рассмотрим далее зависимость F_{θ} от θ и μ_{θ} . Эта задача была решена Лэнгмюром (⁴) и Топпингом (⁵) для двумерной решетки, в узлах которой расположены нормальные к поверхности диноли.

Для гексагональной решетки (4, 5) в узле

$$F = 11\mu / l^3.$$
 (7)

Для прямоугольной решетки (5) в узле

$$F = 9\mu / l^3. \tag{8}$$

Здесь *l* — кратчайшее расстояние между соседями. Если поверхность покрыта полностью (число диполей *N_m*), для обеих решеток

$$F = 9\mu N_m^{3/2}$$

Для «неподвижного» слоя (⁶) пеполное покрытие означает уменьшение среднего числа соседей в θ раз и

$$F_{\theta} = 9\mu_{\theta}\theta N_{m}^{3/2}$$
(10)

Для «неподвижного» слоя (7) неполное покрытие означает увеличение *l* и

$$F_{\theta} = 9\mu_{\theta} (\theta N_m)^{3/2}. \tag{11}$$

Отметим, однако, что Лэнгмюр (⁴) и Топпинг (⁵) использовали уравиение $F = \Sigma (\mu / x^3)$, выведенное при условии, что *x* расстояние между диполями — много больше *a* плеча диполя. В случае адсорбции это условие не выполняется. Можно показать, что энергия взаимодействия пары диполей. расположенных нормально к поверхности на расстоянии *x* один от другого равна $\frac{2\mu^2}{a^2} \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + a^2}}\right)$. Таким образом,

$$F = \mu \sum \frac{2}{a^2} \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + a^2}} \right) = \frac{\mu}{l^3} \sum \frac{2l^3}{a^2} \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + a^2}} \right).$$
(12)

Эту сумму определили для ряда отношений а/l следующим образом: суммпровали вклад всех диполей до x = 4l, вклад остальных представляли интегралом. Полученные результаты ($F / \frac{\mu}{\mu}$) сведены в табл. 1.

Для адсорбции атомов щелочных металлов на поверхности металла $a/l = \frac{1}{2} - \frac{1}{4}$. В этом случае ошибка при использовании коэффициента 9 не превышает 5-10%.

Величина и, может быть определена следующим образом:

$$\mu_{\theta} = \eta_{\theta} \cdot 4, 8 \cdot 10^{-10} a - 2\alpha_{\mu} \left[\frac{\eta_{\theta} \cdot 4, 8 \cdot 10^{-10}}{a^2} + \frac{\mu_{\text{HaB}}}{a^3} + 9\mu_{\theta} (\theta N_m)^{3/2} \right].$$
(13)

Здесь а — удвоенное расстояние заряда от поверхности металла: $\eta_{\theta} \cdot 4.8 \cdot 10^{-10}$ — заряд алсорбированной частицы; $\alpha_{\mu} \cdot \eta_{\theta} \cdot \overline{4}, 8 \cdot$ $\cdot 10^{-10} / \hat{a}^2$ момент, наведенный в адсорбированной частице зеркальным изображением заряда (⁷); $a_{\mu}\mu_{\mu ab}/a^3$ — момент, наве-денный в адсорбированной частице зер-

$\frac{a}{l}$	Решетка	
	прямоуголь- ная	гсксагональ- ная
0 1/4 1/2 ³ /4 1	$ \begin{array}{c c} 9\\ 8,8\\ 8,2\\ 7,5\\ 6,8 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Примечание. В скобках указаны значения коэффициента персд и в уравнении (9).

кальным изображением наведенных диполей µнав; ап9µв / (θN^m)^{3/2} — момент, наведенный полем остальных диполей. Коэффициент 2 введен в предположении, что эффект удваивается вследствие зеркального изображения. Соответственно

$$\mu_{0} = \eta_{0} \cdot 4, 8 \cdot 10^{-10} \cdot a - 2\alpha_{\mathrm{II}} \left[\frac{\eta_{0} \cdot 4, 8 \cdot 10^{-10}}{a^{2}} + \frac{(\mu_{\mathrm{HaB}})_{0}}{a^{3}} \right],$$
(14)

$$\frac{\boldsymbol{\mu}_{\boldsymbol{\theta}}}{\boldsymbol{\eta}_{\boldsymbol{\theta}}} = \frac{\boldsymbol{\mu}_{\boldsymbol{\theta}}}{\boldsymbol{\eta}_{\boldsymbol{\theta}}} - \frac{2\alpha_{\boldsymbol{\pi}}}{\boldsymbol{\eta}_{\boldsymbol{\theta}}} \left[\frac{9 \left(\boldsymbol{\theta} \boldsymbol{N}_{\boldsymbol{m}} \right)^{3/2} \boldsymbol{\mu}_{\boldsymbol{\theta}}}{a^{3}} + 9\boldsymbol{\mu}_{\boldsymbol{\theta}} \left(\boldsymbol{\theta} \boldsymbol{N}_{\boldsymbol{m}} \right)^{3/2} \right],$$
(15)

$$\frac{\mu_{\theta}}{1-\Delta\eta/\eta_0} \left[1+2\alpha_{\pi}9N_m^{3/2}\left(1+\frac{1}{a^3}\right) \right] = \mu_0.$$
(16)

Из уравнений (5), (6), (11) получаем (для «подвижного» слоя)

$$\Delta \eta = 9 \frac{1 - \eta_0}{H_{\rm K} - H_{\rm H}} \,\mu_{\rm H} \left(1 - \frac{2\alpha_{\rm H}}{a^3} \right) (\theta N_m)^{3/2} \,\mu_{\theta}. \tag{17}$$

Из уравнений (17) и (16) получаем

$$\mu_{\theta} = \mu_{0} \cdot \left(1 + 9 \left(\theta N_{m} \right)^{s/2} \left[2\alpha_{H} \left(1 + \frac{1}{a^{3}} \right) + \frac{1 - \eta_{0}}{H_{K} - H_{H}} \frac{\mu_{\mu}\mu_{0}}{\eta_{0}} \left(1 - \frac{2\alpha_{H}}{a^{3}} \right) \right] \right)^{-1}.$$
 (18)

Это уравнение совпадает с уравнением Миллера (⁸)

$$\mu_{\theta} = \mu_{0} (1 + 9 (\theta N_{m})^{3/2} \alpha)^{-1}, \qquad (19)$$

если

$$\alpha = 2\alpha_{\rm H} \left[1 + \frac{1}{a^3} + \frac{1 - \eta_0}{\eta_0 (H_{\rm K} - H_{\rm H})} \,\mu_{\rm H} \mu_0 \left(1 - \frac{2\alpha_{\rm H}}{a^3} \right) \right]. \tag{20}$$

Следовательно, деполяризационное уравнение (19) может быть использовано для описания адсорбции с переносом заряда, но при этом коэффициент поляризации а является эффективным в отличие от истинного коэффициента поляризации α_и, применяемого для расчета поляризации адсорбированной частицы зеркальным изображением (14).

Примем, что а_и равны коэффициентам поляризуемости изолированных иопов щелочных металлов: для цезия 3,3 · 10⁻²⁴, для калия 1,3 · 10⁻²⁴ см³, для натрия $0,2 \cdot 10^{-24}$ см³ (⁹). Примем, что *а* в уравнении (14) равно $2r_i$ (r_i — радиус иона) и $\eta_0 = 0,8$. Подстановка этих величин в уравнение (14) приводит к следующему результату: значения $\eta_0 \cdot 4.8 \cdot 10^{-10} \cdot 2r_i$ превышают

Доклады АН, т. 203, № 2

Таблица 1

значения μ_0 для адсорбции цезия примерно на 6D, для адсорбции калия примерно на 3D, для натрия различие невелико. Сопоставление эксперииентальных значений μ_0 с величиной $4.8 \cdot 10^{-10} \cdot 2r_i$ было проведено Хигачи, Ри и Эйрингом (¹⁰), которые нашли, что для цезия на вольфраме различие составляет ~8D, для калия на вольфрамс ~ 3D, для патрия обе величины совпали. Таким образом, можно предположить, что выбранные значения α_{μ} не занижены или занижены не слишком сильно.

Рис. 1. Зависимость 1 / μ от ($\theta^{3/2}$) для адсорбции калия па вольфраме по дапным (¹¹). *I* — грань (110), *2* — грань (111) (μ рассчитан по уравнению $\mu = \Delta \varphi^- / 2\pi \theta N_m$)

Оценим далее величину эффективного коэффициента поляризуемости (уравнение (20)). Используя значения и_и = 10D и $\mu_0 = 8D$, приняв $\eta_0 = 0.8$ и $H_{\rm R} - H_{\rm H} =$ = 1 эв, получаем для адсорбции цезия $a = 23 \cdot 10^{-24}$ см³, для адсорбции калия $a = 20 \cdot 10^{-24}$ см³. Видно, что эффективные коэффициенты поляризуемости превышают истинные примерно на порядок. Это подтверждают данные эксперимента. На рис. 1 приведены результаты Гомера (11) по адсорбции калия на индивидуальных гранях вольфрама. Они могут быть описаны уравнением (19) с коэффициентами поляризуемости $\alpha = 20 \cdot 10^{-24}$ см³ (грань 110) и $\alpha = 28 \cdot 10^{-24}$ см³ (грань (111)). Будар (¹²) показал, что данные Лэнгмюра (¹³) по адсорбции цезия на вольbраме могут быть описаны этим же уравнением (19) с коэффициентом поляризуемости а = 28 · 10⁻²⁴ см³. Будар (¹²) рассматривал найденную величину а как сред нюю между значениями для атома и иона Резор и Вернер (14) при описании адсорбции цезия на вольфраме также использова-

ли значение коэффициента поляризуемости атома цезия. Однако, как показано в настоящей работе, эти значения а являются эффективными, а не истинными *.

Государственный научно-исследовательский и проектный институт азотной промышленности и продуктов органического синтеза Москва Поступило 14 IV 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Т. Ree, N. Miroyama, Proc. Imp. Acad. Japan, **20**, 93 (1944); Chem abstr., **43**, 5240 (1949). ² I. Higuchi, T. Ree, H. Eyring, J. Am. Chem. Soc., **79**, 1330 (1957). ³ J. Bardeen, Phys. Rev., **58**, 727 (1940). ⁴ J. Langmuir, J. Am. Chem. Soc., **54**, 2798 (1932). ⁵ J. Topping, Proc. Roy. Soc., A, **144**, 67 (1927). ⁶ J. K. Roberts, Some Problems in adsorption, Cambridge, 1939. ⁷ Де Бур, Электронная эмпссия и явления адсорбщи, М.-. J., 1936. ⁸ A. R. Miller, Proc. Cambr. Phil. Soc., **42**, 292 (1946). ⁹ Ч. Киттель, Введение в физику твердого тела, М., 1963. crp. **194**. ¹⁰ J. Higuchi, T. Ree, H. Eyring, J. Am. Chem. Soc., **77**, 4669 (1955). ¹¹ R. Gomer, Disc. Farad. Soc., № 41, 14 (1966). ¹² M. Boudart, J. Am. Chem. Soc., **74**, 3356 (1952). ¹³ J. B. Taylor, J. Langmuir, Phys. Rev., **44**, 432 (1933). ¹⁴ N. S. Rasor, C. Warner, J. Appl. Phys., **35**, 2589 (1964).

386

^{*} Поэтому, в частности. их нельзя использовать для расчета поляризации адсорбированной частицы зеркальным изображением (уравнение (14)).