УДК 541.124/128

ФИЗИЧЕСКАЯ ХИМИЯ

Э. Д. ГЕРМАН

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ РЕАКЦИЙ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ

(Представлено академиком А. Н. Фрумкиным 9 XII 1971)

В настоящей работе приведены результаты теоретического исследования, выполненного в рамках квантовомеханической теории (¹), протекающих по бимолекулярному механизму $S_{N}2$ реакций нуклеофильного замещения

$$X^- + CH_3Y \rightarrow CH_3X + Y^-, \qquad (IV)$$

где X, Y = F, Cl, Br, J (2).

Согласно экспериментальным данным, частоты валентных колебаний $\mathbf{C}-\mathbf{Y}(\mathbf{C}-\mathbf{X})$ в галоидалкилах находятся в пределах $\sim 500-1000\,\mathrm{cm^{-1}}$ (3). Частоты колебаний $\mathbf{X}^-(\mathbf{Y}^-)$ в растворителе значительно меньше и совпадают по порядку величины с обратным временем дебаевской релаксации. Следовательно, частота колебания вдоль степени свободы, описывающей

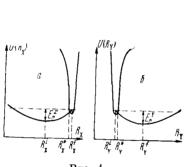


Рис. 1

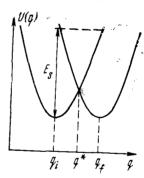


Рис. 2

движение X^- , испытывает резкое увеличение в процессе, когда X^- присоединяется к атому углерода, а частота колебания вдоль степени свободы, описывающей движение Y, резко уменьшается, когда Y отрывается от углерода и в виде иона Y^- переходит в раствор. Поэтому, как следует из рис. 1, где приведены начальный и конечный термы, в активированном состоянии связь C-Y практически не растянута ($R_Y^*=R_Y^i$), а координата X^- почти совпадает с равновесной координатой в конечном состоянии ($R_X^* \approx R_X^i$). Активированное состояние по координате растворителя изображено на рис. 2. На этих рисунках даны определения важных для теории параметров энергий реорганизации по различным степеням свободы системы из начального равновесного состояния в конечное равновесное состояние (E_x^*, E_x^*, W, E_z) .

состояние $(E_r^{\rm x}, E_r^{\rm y}\,{\rm n}\,E_s)$. Частоты деформационных колебаний H—С—Н и Y—С—Н в CH₃Y составляют ~1400 см⁻¹ (³) и, согласно ранее установленному критерию (¹), являются квантовыми. Поэтому в соответствии с общей теорией (¹) по стененям свободы, описывающим движение протонов, происходит квантовое, т. е. подбарьерное движение, после того как в переходном состоянии произошло выравнивание уровней начального и конечного состояний кванто-

вой подсистемы за счет флуктуации поляризации растворителя и координаты иона $\mathbf{X}^{-}.$

Выражение для энергии активации, отвечающее принятому механизму, имеет вид

$$E_a = E_r^{X} + (E_s + \Delta I + E_r^{Y} - E_r^{X})^2 / 4E_s,$$
 (2)

где ΔI — расстояние между минимумами на поверхностях потенциальной энергии конечного и начального состояний и для рассматриваемых реакций практически совпадает с теплотой реакции ΔH_0 .

Таблица 1 Экспериментальные и теоретические значения энергий активации (ккал/моль)

NW 11.11	Реакция *	Е ^{ЭКСП} по (5, 6)	E _a reop (±2)
1 2 3 4 5 6 7 8 9 10 11 12	$RF + F^{-} \rightarrow RF + F^{-}$ $RCl + F^{-} \rightarrow RF + Cl^{-}$ $RBr + F^{-} \rightarrow RF + Br^{-}$ $RJ + F^{-} \rightarrow RCl + F^{-}$ $RCl + Cl^{-} \rightarrow RCl + Cl^{-}$ $RBr + Cl^{-} \rightarrow RCl + Br^{-}$ $RJ + Cl^{-} \rightarrow RCl + Br^{-}$ $RJ + Cl^{-} \rightarrow RCl + Br^{-}$ $RF + Br^{-} \rightarrow RBr + F^{-}$ $RCl + Br^{-} \rightarrow RBr + Br^{-}$ $RJ + Br^{-} \rightarrow RBr + Br^{-}$ $RJ + Br^{-} \rightarrow RBr + J^{-}$	$ \begin{array}{c} 22\pm0,34\\ -\\ 27,8\pm2,2\\ 19 \end{array} $	28 24,8 23,9 23,1 24,8 21 20,2 19,4 23,9 20,2 19,4 18,9
	* R=CH ₃ .		

В процессе реакции (1) происходит перенос заряда от сферического иона X^- (радиуса r_x) к сферическому иону Y^- (радиуса r_y) на расстояние $R \approx \approx r_x + r_y + 2r_c$ (где r_c -ковалентный радиус углерода). В рамках такой модели энергия реорганизации выражается формулой (аналогичной полученной ранее Маркусом для реакций электронного переноса (4))

$$E_s = c (1/2r_{\rm X} + 1/2r_{\rm Y} - 1/R),$$
 (3) где c — константа, учитывающая свойства среды.

Согласно оценкам по этой формуле, величина E_s для рассматриваемых реакций составляет $\gtrsim 50$ ккал/моль. Вклад в энергию активации члена $\Delta I + E_r{}^{Y} - E_r{}^{X}$ весьма мал по сравнению с E_s . Для симметричных реакций (X⁻ + CH₃X \rightarrow CH₃X + X⁻) этот вклад тождественно равен нулю; в других случаях — порядка нескольких ккал/моль (как следует из экспериментов величина $\Delta I \sim 0$; величина E^{X_r} определяется параметрами потенциала взаимодействия между X⁻(Y⁻) и CH₃Y(CH₃X), так что для аналогичных по электронной структуре ионов разность $E_r{}^{Y} - E_r{}^{X} \approx 0$). Поэтому приближенное выражение для энергии активации имеет вид

$$E_a = E_r^{\mathbf{X}} + E_s/4. \tag{4}$$

Рассмотрим серию реакций, в которых ион X^- один и тот же, но меняется Y^- . Тогда изменение E_a , обусловленное изменением Y, равно

$$\delta E_a = \delta E_s / 4 = \frac{c}{4} \left[\delta \left(\frac{1}{2r_Y} \right) - \delta \left(\frac{1}{R} \right) \right]. \tag{5}$$

Анализ формулы (5) для конкретного случая, когда X=J, а Y=F, Cl, Br, J, позволяет определить по экспериментальным энергиям активации константу c ($c=200\pm20$ ккал/моль) и, следовательно, по формуле (3) найти величину E_s эксп для каждой пары X и Y. Например, в случае X=J и Y=J, Br, Cl, F средние значения E_s соответственно равны 55, 59, 62 и 76 ккал/моль. При этом величина E_r^X , определяемая согласно (4) как разность E_a и $E_s/4$, составляет 4 ± 2 ккал/моль.

Найденные таким образом из анализа экспериментальных данных для серии реакций $J^- + CH_3Y \to CH_3J + Y^-$ значения параметров c и E_r^{-X} можно использовать для вычисления энергий активации аналогичных реакций

с другими X. Сопоставление вычисленных и экспериментальных значений E_a приведено в табл. 1. Хорошее согласие между $E_a^{\text{теор}}$ и $E_a^{\text{эксл}}$ позволяет надеяться на разумность изложенного подхода для анализа рассматриваемых реакций нуклеофильного замещения (1).

Автор выражает глубокую благодарность Р. Р. Догонадзе за обсужде-

ние работы и ценные замечания.

Институт электрохимии Академии наук СССР Москва Поступило 2 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. Р. Догонадзе, А. М. Кузнецов, Итоги науки, Электрохимия, Изд. АН СССР, 1969. ² П. Сайкс, Механизмы реакций в органической химии, М., 1971. ³ Л. Беллами, Инфракрасные спектры молекул, ИЛ, 1957. ⁴ R. А. Marcus, J. Chem. Phys., 24, 966 (1956). ⁵ R. H. Bathgate, E. A. Moelwyn-Hughes, J. Chem. Soc., 1959, 2642. ⁶ С. Глестон, К. Лейдлер, К. Эйринг, Теория абсолютных скоростей реакций, ИЛ, 1948, стр. 453.