УДК 517.55

MATEMATUKA

С. И. ПИНЧУК

О СУЩЕСТВОВАНИИ ГОЛОМОРФНЫХ ПЕРВООБРАЗНЫХ

(Представлено академиком М. А. Лаврентьевым 24 XI 1971)

Пусть область $D \subset \mathbb{C}$, H(D) — пространство функций, голоморфных в D. Хорошо известно, что условие существования для любой функции $f \in H(D)$, голоморфной первообразной, эквивалентно односвязности области D^* .

Пусть теперь область $D \subset \mathbb{C}^n$, n > 1. Функция $g \in H(D)$ называется голоморфной первообразной по z_1 функции $f \in H(D)$, если выполняется равенство

$$\partial g / \partial z_1 = f. \tag{1}$$

Возникает естественная задача: каким условиям должна удовлетворять область D, чтобы для любой функции $f \subseteq H(D)$ существовала голоморфная первообразная по z_1 ?

В работе (3) показывается, что односвязность области D не является достаточным условием разрешимости поставленной задачи, а если D — область голоморфности, то необходимое условие состоит в том, чтобы для любых комплексных чисел c_2, \ldots, c_n пересечение области D с плоскостью $\{z_2 = c_2, \ldots, z_n = c_n\}$ было односвязным.

В настоящей заметке находятся достаточные условия разрешимости сформулированной задачи, а в случае, когда D есть область голоморфности, находятся необходимые и достаточные условия.

Пусть область $D \subset \mathbb{C}^n$, $1 \leq m \leq n$. Введем обозначения: $z = (z_1, \ldots, z_m)$, $z = (z_{m+1}, \ldots, z_n)$, $z = (z_1, \ldots, z_n) = (z_1, \ldots, z_n)$, $z = (z_1, \ldots, z_n) = (z_1, \ldots, z_n)$, $z = U^m \times U^{n-m}$ открытый поликруг, $z = U \cap \{U^m \times U^{n-m}\}$.

 $D \in M$ м а. Пусть область $D \subset \mathbb{C}^n$ такова, что для всякого " z^n множество D_{mz^n} связно и односвязно. Пусть U^n — поликруг, принадлежащий D, а функции $f_1,\ldots,f_m \in H(D)$ таковы, что

$$\partial f_i / \partial z_j = \partial f_j / \partial z_i, \quad 1 \leqslant i, \ j \leqslant m.$$
 (2)

Тогда существует функция $g \in H(T)$ такая, что

$$\partial g / \partial z_i = f_i|_{T}, \quad i = 1, \dots, m.$$

Доказательство. Пусть $U^n = \{z \in \mathbb{C}^n : |z_i - a_i| < r_i, i = 1, ..., n\}, a' = (a_1, ..., a_m)$: Рассмотрим

$$g(z, "z) = \int_{(z_i, "z)}^{(z_i, "z)} \sum_{i=1}^{m} f_i dz_i,$$
 (3)

где интегрирование ведется по кривой, соединяющей точки ('a, ''z) и ('z, ''z) и принадлежащей множеству $D_{''z}$. При фиксированном ''z подынтегральная форма $\omega = \sum_{i=1}^m f_i dz_i$ замкнута по условию. Множество $D_{''z}$ одно

связно, поэтому значение g('z, ''z) не зависит от кривой, соединяющей ('a, ''z) и ('z, ''z), т. е. g('z, ''z) — корректно определенная функция. Не-

^{*} Напомним, что область D называется односвязной, если в ней любой замкнутый путь гомотопен нулю.

посредственно проверяется, что g('z, ''z) голоморфна и $\partial g/\partial z_i = f_i|_{T}$. Лемма доказана.

Пусть точки $('z^1, "z^1)$ и $('z^2, "z^2)$ принадлежат области D. Будем считать их эквивалентными, если $"z^1 = "z^2$ и эти точки лежат в одной компоненте связности множества D_{m^2} . Множество классов эквивалентности обозначим \widetilde{D}_m . Возникает естественная проекция $\pi_m : D \to \widetilde{D}_m$. Эта проекция индуцирует на \widetilde{D}_m топологию. Открытыми множествами в этой топологии будут образы открытых множеств из D. Более того, на \widetilde{D}_m возникает комплексная структура. Легко проверить, что если в качестве локальных координат выбрать "z, то \widetilde{D}_m будет удовлетворять всем аксиомам комплексного многообразия, кроме аксиомы отделимости. Но этого достаточно, чтобы определить на \widetilde{D}_m голоморфные функции, пучок ростков голоморфных функций O и групны когомологий с коэффициентами в пучке O.

Обозначим через $Z^m(D)$ множество наборов из m функций (f_1, \ldots, f_m) таких, что $f_i \in H(D)$, $\partial f_i / \partial z_j = \partial f_j / \partial z_i$, $1 \le i, j \le b$. Через $B^m(D)$ обозначим подмножество $Z^m(D)$, состоящее из таких наборов (f_1, \ldots, f_m) , что

 $f_i = \partial g / \partial z_i$ для некоторой $g \in H(D)$.

Теперь мы можем сформулировать основное утверждение.

Теорема. Пусть область голоморфности $D \subset \mathbb{C}^n$, $1 \leqslant m \leqslant n$, и пусть для любого "z° множество D_{uz} " является односвязным.

Tог ∂a

$$Z^{m}(D)/B^{m}(D) \simeq H^{i}(\widetilde{D}_{m}, O), \tag{4}$$

где $H'(\tilde{D}_m, O)$ — первая группа когомологий пространства \tilde{D}_m с коэффициентами в пучке ростков голоморфных функций.

Доказательство. Пусть $\mathscr{U} = \{U_{\alpha}^{\ n}\}_{\alpha \in A}$ — покрытие области D ноликругами, принадлежащими D. Тогда $\widetilde{\mathcal{U}}_m = \{\pi_m(U_{\alpha}^{\ n}\}_{\alpha \in A}$ — покрытие D_m . Построим гомоморфизм

$$\varphi: Z^m(D) \to H^1(\widetilde{\mathcal{U}}_m, O). \tag{5}$$

Пусть $(f_1, \ldots, f_m) \in Z^m(D)$, $D_{\alpha} = \pi_m^{-1} \pi_m(U_{\alpha}^n)$. Применяя к D_{α} и U_{α}^n лемму, получим, что существует функция $g_{\alpha} \in H(D_{\alpha})$ такая, что

$$\partial g_{\alpha}/\partial z_{i} = f_{i}|_{D_{\alpha}}.$$
 (6)

Рассмотрим функцию

$$h_{\alpha\beta} = g_{\alpha} - g_{\beta} \in H(D_{\alpha} \cap D_{\beta}). \tag{7}$$

В силу (5) $\partial h_{\alpha\beta}/\partial z_i=0$, $i=1,\ldots,m$. Поэтому можно рассматривать $h_{\alpha\beta}$ как функцию, голоморфную на $\pi_m(D_\alpha\cap D_\beta)=\pi_m(D_\alpha)\cap\pi_m(D_\beta)$. В силу (7) $\{h_{\alpha\beta}\}$ является голоморфным коциклом для покрытия $\widehat{\mathcal{U}}_m$. Поставим в соответствие элементу $(f_1,\ldots,f_m)\in Z^m(D)$ класс когомологий коцикла $\{h_{\alpha\beta}\}$ в группе $H^1(\mathcal{U}_m,O)$. Очевидно, что это соответствие не зависит от выбора функций g_α и является гомоморфизмом. Покажем, что его ядро есть $B^m(D)$. Пусть $\varphi(f_1,\ldots,f_m)=0$, т. е. для любых α , $\beta\in A$ существуют функции $h_\alpha\in H(\pi_m(D_\alpha))$ и $h_\beta\in H(\pi_m(D_\beta))$, что $h_{\alpha\beta}=h_\beta-h_\alpha$. Рассматривая их как функции в $D_\alpha\cap D_\beta$, имеем $h_{\alpha\beta}=g_\alpha-g_\beta=h_\beta-h_\alpha$, или $g_\alpha+h_\alpha=g_\beta+h_\beta$. Функции $g_\alpha+h_\alpha$ определяют глобальную функцию $g\in H(D)$, что

$$g|_{D_{\alpha}} = g_{\alpha} + h_{\alpha}, \quad \partial g/\partial z_i = f,$$

т. е. $(f_1, \ldots, f_m) \in B^m(D)$.

Обратно, пусть $(f_1, \ldots, f_m) \subseteq B^m(D)$. Тогда очевидно, что $\varphi(f_1, \ldots, f_m) = 0$.

Покажем теперь, что φ — эпиморфизм. Пусть $\{h_{\alpha\beta}\}$ — голоморфный коцикл для покрытия $\widetilde{\mathcal{U}}_m$. Его можно рассматривать как голоморфный коцикл для покрытия $\{D_\alpha\}_{\alpha\in A}$ области D. Так как D является областью голоморфности, то для любых α , $\beta \in A$ существуют функции

$$h_{\alpha} \rightleftharpoons H(D_{\alpha}), \quad h_{\beta} \rightleftharpoons H(D_{\beta}),$$

что в пересечении $D_{\alpha} \cap D_{\beta}$ имеем

$$h_{\alpha\beta} = h_{\beta} - h_{\alpha}, \quad \partial h_{\alpha\beta} / \partial z_{i} = \partial h_{\beta} / \partial z_{i} - \partial h_{\alpha} / \partial z_{i} = 0, \tag{8}$$

где $i=1,\ldots,m$.

В силу (8) существуют функции $f_1, \ldots, f_m \in H(D)$ такие, что $f_i \mid_{D_\alpha} = \partial h_\alpha / \partial z_i.$

Очевидно, что $(f_1, \ldots, f_m) \in Z^m(D)$ и $\varphi(f_1, \ldots, f_m) = \overline{h}$, где \overline{h} — класс когомологий коцикла $\{h_{\alpha\beta}\}$.

Таким образом, доказано, что

$$Z^m(D)/B^m(D)\simeq H^1(\widetilde{\mathcal{U}}_m, O).$$

Левая часть этого равенства не зависит от покрытия $\widetilde{\mathcal{U}}_m$, поэтому, выбирая его сколь угодно мелким и переходя к прямому пределу групп $H^1(\widetilde{\mathcal{U}}_m, O)$ (1), получим (4).

Теорема доказана.

Замечание. Мы пользовались тем, что D — область голоморфности лишь тогда, когда доказывали, что ϕ — эпиморфизм.

Следствие 1. Пусть область $D \subset \mathbf{C}^n$, для любого " $z^0 = (z_2^0, \dots, z_n^0)$

множество D_{n_z} односвязно и $H^1(\tilde{D}_4, O) = 0$.

Тогда для всякой голоморфной функции $f \in H(D)$ существует ($g \in H(D)$, что $\partial g / \partial z_1 = f$.

 \exists то следует из теоремы при m=1 и замечания.

Следствие 2. Пусть область голоморфности $D \subset \mathbb{C}^n$. Для того чтобы любая голоморфная функция $j \in H(D)$ имела по z_1 голоморфную первообразную $g \in H(D)$, необходимо и достаточно, чтобы область D удовлетворяла следующим условиям:

1) для любого " $z^0=(z_2{}^0,\ldots,z_n{}^0)$ множество $D_{nz}{}^0$ односвязно;

(2) $H^1(\widetilde{D}_1, O) = 0.$

Следствие 2 вытекает из теоремы с учетом того, что условие 1) необходимо.

Проиллюстрируем полученные результаты несколькими примерами.

1. Рассмотрим область $D \subset \mathbb{C}^3$, задаваемую неравенством

$$|z_1z_2-z_3|<1.$$

D- область голоморфности, она удовлетворяет условиям теоремы при m=1. Очевидно, что

$$\widetilde{D}_1 = \mathbb{C}^2_{z_2 z_3} \setminus \{z_2 = 0, |z_3| \geqslant 1\}.$$

по теореме Хартогса о продолжении (2) всякая функция, голоморфная на \widetilde{D}_1 , продолжается до целой. В \mathbb{C}^2 это означает, что $H^1(\widetilde{D}_4, O) \neq 0$ (2).

По доказанной теореме не всякая функция $f \in H(D)$ имеет голоморф-

ную первообразную по z_1 .

2. Пусть $D = \{(z_1, z_2) \in \mathbb{C}^2: |z_1^2 - z_2| < 1, |z_2| > 1\}$. Здесь множество $D_{z_2^0}$ односвязно при любом z_2^0 , а \overline{D}_1 представляет риманову поверхность аналитической функции $z_1 = \sqrt{z_2}$ при $|z_2| > 1$. Эта новерхность является многообразием Штейна и, следовательно, $H^1(\overline{D}_1, O) = 0$.

ляется многообразием Штейна и, следовательно, $H^1(\widetilde{D}_1, O) = 0$. 3. Пусть $D = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1^2 - z_2| < 1\}$. Здесь \widetilde{D}_1 не будет комплексным многообразием (не выполнена аксиома отделимости) и можно

показать, что $H^1(\vec{D}_1, O) \neq 0$.

В заключение автор пользуется случаем выразить благодарность проф. Б. В. Шабату за постоянное внимание к работе.

Московский государственный университет им. М. В. Ломоносова

Поступило 29 X 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 Л. Хёрмандер, Введение в теорию функций псскольких комплексных переменных, М., 1968. 2 В. В. Шабат, Введение в комплексный анализ «Наука», 1969. 3 I. Wakabayashi, Proc. of the Japan Academy, Tokyo, 44, 820 (1968).